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ABSTRACT

X-Ray fluorescence (XRF) scanning of works of art is be-
coming an increasingly popular non-destructive analytical
method. The high quality XRF spectra is necessary to obtain
significant information on both major and minor elements
used for characterization and provenance analysis. However,
there is a trade-off between the spatial resolution of an XRF
scan and the Signal-to-Noise Ratio (SNR) of each pixel’s
spectrum, due to the limited scanning time. In this paper, we
propose an XRF image super-resolution method to address
this trade-off, thus obtaining a high spatial resolution XRF
scan with high SNR. We use a sparse representation of each
pixel using a dictionary trained from the spectrum samples
of the image, while imposing a spatial smoothness constraint
on the sparse coefficients. We then increase the spatial res-
olution of the sparse coefficient map using a conventional
super-resolution method. Finally the high spatial resolution
XRF image is reconstructed by the high spatial resolution
sparse coefficient map and the trained spectrum dictionary.

Index Terms— X-ray fluorescence, dictionary learning,
sparse coding, super-resolution

1. INTRODUCTION

Over the last few years X-Ray fluorescence (XRF) laboratory-
based systems have evolved to lightweight and portable in-
struments thanks to technological advancements in both X-
Ray generation and detection. Spatially resolved elemental
information can be provided by scanning the surface of the
sample with a focused or collimated X-ray beam of (sub) mil-
limeter dimensions and analyzing the emitted fluorescence ra-
diation, in a nondestructive in-situ fashion. The new genera-
tions of XRF spectrometers are used in the Cultural Heritage
field to study the technology of manufacture, provenance, au-
thenticity, etc. Because of its fast non-invasive set up, it is
able to study fragile and location inaccessible art objects and
archaeological collections. In particular, XRF has been exten-
sively used to investigate historical paintings, capturing the
elemental distribution images to reveal their complex layered
structure, and witness the painting history from the artist cre-
ation to restoration processes [1, 2].

As with other imaging techniques, high spatial resolution

and high SNR, are desirable for XRF scanning system. How-
ever, the acquisition time is usually limited resulting in a com-
promise between dwell time, spatial resolution and desired
image quality. In the case of scanning large scale mappings, a
choice may be made to reduce the dwell time and increase the
step size, resulting in low SNR XRF spectra and low spatial
resolution XRF images.
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Fig. 1. (a) XRF map showing the distribution of Cr Ka on
a section of the ”Bedroom”, by Vincent Van Gogh, The Art
Institute of Chicago, and (b) the automatic registration of 10
maps layered on top of the original resolution RGB image.

An example of an XRF scan is shown in Figure 1 (a).
Channel 636 corresponding to Cr Ka elemental X-ray lines
was extracted from a scan of Vincent van Gogh’s (Dutch,
1853− 1890) “The Bedroom” (by Sept. 5, 1889, Oil on can-
vas, 73.6×92.3 cm, The Art Institute of Chicago, Helen Birch
Bartlett Memorial Collection, 1926.417). The image is color
coded for better visibility. This is an image out of 4096 chan-
nels that were simultaneously acquired by a Bruker M6 scan-
ning energy dispersive XRF instrument. The image has a low
resolution (LR) of 96 × 85 pixels, yet still took 1 − 2 hour
to acquire it. Given the fact that the paining has dimensions
73.6×92.3 cm, at least 10 such patches are needed to capture
the whole painting. Much higher resolution would be desir-
able for didactic purposes to show curators, conservators, and
the general public. This makes the acquisition process highly
impractical and therefore impedes the use of XRF scanning
instruments as high resolution widefield imaging devices. In
Figure 1 (b) we also show an automatic registration of all 10
images layered on top of the original RGB image.

While there is a large body of work on super-resolution
(SR) for either conventional RGB images [3–6] or hyperspec-
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Fig. 2. Our proposed pipeline for the dictionary learning based XRF image SR approach.

tral images [7–9], little work has been done for SR on XRF
images. XRF image SR poses a particular challenge because
the acquired spectrum signal usually has low SNR. In addi-
tion, the correlations among spectral channels need to be pre-
served for the interpolated pixels. Finally, the large number of
channels (4096 channels in Figure 1) leads to a computational
challenge, since super-resolving each channel individually is
computational expensive.

In this paper we propose an SR approach to obtain high-
resolution (HR) XRF images. Our proposed XRF image SR
algorithm can also be applied to spectral images obtained
ny other raster scanning methods, such as Scanning Electron
Microscope (SEM), Energy Dispersive Spectroscopy (EDS)
and Wavelength Dispersive Spectroscopy (WDS). We model
the spectrum of each pixel using sparse coding [10, 11] with
a trained spectral dictionary, along with a spatial smoothness
constraint on the sparse coefficients of all pixels. Then the
spatially smooth sparse coefficient maps is super-resolved
using conventional SR methods. Finally an HR XRF im-
age is reconstructed by the HR sparse coefficient map and
the trained spectral dictionary. To the best of our knowl-
edge, dictionary learning has not been applied before to the
problem of XRF image signal representation, denoising, and
super-resolution. Experimental results demonstrate that the
proposed approach consistently outperforms baseline ap-
proaches.

2. DICTIONARY LEARNING FOR SPECTRUM
REPRESENTATION

In XRF, materials emit energy that is characteristic of the pure
atomic elements (e.g. Potassium, Carbon, etc.) present. The
spectrum at every pixel in an XRF map is therefore an ad-
ditive mixture of the spectral response of a small number of
elements. The spectrum of the ith pixel xi ∈ RB in an XRF
image can be expressed as the linear combination

xi =

M∑
j=1

djαij = Dαi, (1)

with the spectral dictionary matrix D ≡ [d1, d2, ..., dM ] con-
sists of a set of basis elemental spectral responses and the

sparse coefficient vector, αi ≡ [αi1, ..., αiM ]T represents the
coefficients of the ith pixel, describing the per pixel concen-
tration of each element. By this definition, at most M basic
elements exist in the XRF image. The spectrum dictionary
D acts as a non-orthogonal basis to represent X in a lower
dimensional space RM , (M � B).

The atoms of the dictionary are non-negative vectors as
they correspond to the spectrum of basic elements. The sparse
coefficients vectors are non-negative as well since they repre-
sent the amount of basic elements. Therefore, a dictionary
learning technique [12] with positive constraints on both the
dictionary atoms and the sparse coefficients can be applied to
learn the spectrum dictionary D,

min
D,αi

Nl∑
i=1

‖αi‖1

s.t.
Nl∑
i=1

‖xi −Dαi‖2 ≤ ε,

dj ≥ 0, ∀j ∈ 1, ...,M,
αi ≥ 0, ∀i ∈ 1, ..., Nl,

(2)

where ‖ · ‖1 and ‖ · ‖2 denote the `1 norm and the Euclidean
norm of vectors, respectively, Nl = w×h is the total number
of pixels in the XRF image, and ε represents the modeling er-
ror. The reconstructed spectrum can finally be obtained from
Equation (1).

3. DICTIONARY BASED XRF IMAGE
SUPER-RESOLUTION

In this section, we introduce our proposed pipeline for the
dictionary learning based XRF image SR approach, as illus-
trated in Figure (2). According to this figure, the input LR
XRF image X has dimensions w × h × B, where w × h
represents the spatial resolution and B is the spectral resolu-
tion. A dictionary learning technique [12] is applied on all
w × h pixels of the input XRF image X to obtain the spec-
trum dictionary D (B×M ), where M (M � B) is the num-
ber of atoms in the dictionary. The sparse coefficient map A
(w×h×M ) is estimated by sparse coding every pixel’s spec-
trum with the spectral dictionary D, while applying a spatial



smoothness constraint. The spatial resolution of each band
of the sparse coefficients map A is then increased to W ×H
(W > w,H > h) using a conventional SR method, obtaining
a HR sparse coefficients map AHR (W × H ×M ). Finally
the HR sparse coefficients map AHR and the spectral dictio-
nary D are combined to compute the output HR XRF image
Y (W ×H ×B).

3.1. Smoothness Constraint on the Sparse Coefficients

If we consider one spectral band at a time (one slice of the
volume A in the M dimension), the sparse coefficients αi re-
sulting from Equation (2) are not spatially smooth, thus mak-
ing it impractical for most conventional image SR methods to
increase its spatial resolution. Model based SR methods [4,6]
usually enforce a spatial smoothness prior to regularize the
solution of the inverse problem. Learning based SR meth-
ods [3, 5] are usually trained to find the non-linear mapping
from smooth LR images to smooth HR images. In our work
we impose a spatial smoothness constraint to the determina-
tion of the sparse coefficient map. Conventional image SR
methods can then be applied to increase spatial resolution.

Given the ith pixel xi from X , we collect its neighboring
pixels xki , k = 1, ..., Nw, where Nw is the total number of
neighboring pixels. The following optimization problem is
then solved

min
D,αi,αk

i

Nl∑
i=1

(‖αi‖1 +
Nw∑
k=1

‖αki ‖1)

s.t.
Nl∑
i=1

{‖xi −Dαi‖2 +
Nw∑
k=1

(‖xki −Dαki ‖2

+γ‖αi − αki ‖2)} ≤ ε,
dj ≥ 0, ∀j ∈ 1, ...,M,
αi ≥ 0, ∀i ∈ 1, ..., Nl,
αki ≥ 0, ∀i ∈ 1, ..., Nl, ∀k ∈ 1, ..., Nw,

(3)

where αki is the sparse coefficients corresponding to xki , and γ
is the regularization parameter. The term ‖αi−αki ‖2 enforces
the spatial smoothness of the sparse coefficients. Similarly
to the optimization strategy in [12], we alternatively optimize
over {αi, αki } andD until convergence. Only the sparse coef-
ficients αi are utilized to generate the sparse coefficients map
A.

3.2. Reconstruction of the HR XRF image

Once the spatially smooth sparse coefficient map A is esti-
mated as described in Section 3.1, conventional image SR
methods can be applied to increase spatial resolution slice by
slice. In this paper we applied a state-of-the-art Convolutional
Neural Network (CNN) based SR method [5] to estimate the
HR sparse coefficient map AHR.

In the final step of our algorithm, the output HR XRF im-
age Y is computed from the HR sparse coefficients mapAHR

and spectral dictionary D, resulting from the optimization of
Equation (3). Given the ith pixel αHRi from AHR, its corre-
sponding spectrum yi is reconstructed by

yi = DαHRi . (4)

4. EXPERIMENTAL RESULTS

We performed an extensive set of experiments utilizing both
synthetic and real XRF images. The real data was collected
by a Bruker M6 scanning energy dispersive XRF instrument,
with 4096 channels in spectrum. Studies from XRF image #3
scanned from Vincent Van Gogh’s “Bedroom” (Figure (1))
are presented here.

We first validated that the dictionary learning methods in
both Equation (2) and Equation (3) can accurately represent
the XRF spectrum, and that the reconstructed spectral signal
has a higher SNR compared to the original spectral signal.
The dictionary for both methods has 60 atoms (M = 60), ε
was set to be 0.002 for Equation (2) and 0.025 for Equation
(3), the 8 closest neighboring pixels around one pixel in a 3×3
window were collected as the neighboring pixels (Nw = 8),
and γ was set to be equal to 0.05 in Equation (3).
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Fig. 3. The reconstruction of a spectrum using a dictionary
learning technique. Spectra reconstructed using Equation (2)
and Equation (3) are shifted vertically (for 100 and 50 counts,
respectively) for visualization purposes.

As shown in Figure (3), the dictionary learning algorithms
in both Equations (2) and (3) provide accurate sparse repre-
sentations of the original signal. Notice that the method in
Equation (3) is less accurate due to the spatial smoothness
constraint of the sparse coefficients. The spectral dictionary
is trained from all spectral signals of the XRF image based on
minimizing the Euclidean distance between the reconstructed
signal and the original signal. As a result, noise is reduced,
and the reconstructed signal has a higher SNR compared to
the original signal.

Since SR for XRF images is an open problem, here we
compare our proposed method with 2 baseline methods.
Baseline method # 1 simply super-resolves each channel of



the original LR XRF input image individually using con-
ventional image SR methods. Baseline method # 2 uses
the dictionary learning method in Section 2 to first denoise
the LR input XRF image, and then independently super-
resolves each denoised channel utilizing conventional image
SR methods. To make fair comparisons, we applied the same
conventional image SR method [5] to all cases.

We compare the SR results for different methods with a
synthetic experiment. We combined a noise free spectrum
(4096× 1) and an HR airforce target grayscale image (360×
492) to simulate the ground truth HR XRF image Y gt (360×
492× 4096) . The LR XRF image X (90× 123× 4096) was
obtained by spatially subsampling Y gt by a factor of 4 and
adding Gaussian noise to it. The Root-Mean-Square Error
(RMSE) was computed between the SR results of different
methods and the HR ground truth Y gt. As shown in Table 1,
our proposed method has the smallest RMSE, as well as the
smallest computational time.

Evaluation Baseline # 1 Baseline # 2 Proposed
RMSE 20.99 20.71 20.34

Computational Time (s) 39081 43045 2383

Table 1. Experimental result comparing RMSE and computa-
tional speed for the three SR methods discussed in Section 4.

For our real experiment, HR ground truth was not avail-
able to assess the quality of the reconstructed HR XRF im-
ages. This is because all XRF maps we had access to were
low resolution and noisy. No-reference quality assessment
metrics, such as the dubbed Spatial-Spectral Entropy-based
Quality (SSEQ) index [13] and Naturalness Image Quality
Evaluator (NIQE) index [14], were applied to quantitatively
compare the SR results for different methods. For both SSEQ
and NIQE indices, the smaller the value is, the better the vi-
sual quality.

Evaluation Scale Baseline # 1 Baseline # 2 Proposed

SSEQ
2 34.03 37.09 19.11
3 40.08 45.21 31.81
4 41.50 47.81 34.37

NIQE
2 23.81 22.16 21.60
3 22.57 21.44 19.86
4 21.95 21.39 19.16

Computational
Time (s)

2 19477 20087 3442
3 27174 27798 3552
4 33847 34024 3413

Table 2. Experimental result comparing different methods.

As shown in Table 2, our proposed method always out-
performs the baseline methods using the above mentioned
no-reference quality assessment metrics for different SR fac-
tors. The proposed method also has an advantage in terms of
computational speed, since fewer slices are spatially super-
resolved compared to the baseline methods (M � B).

(a) (b) (c)

(d) (e)

Fig. 4. Visualization of the SR result. Region of interest rel-
ative to Cobalt Kbeta XRF peak (channel #840 - 875) is se-
lected. (a) is the LR input XRF image. (b) is the reconstructed
image based on Equations (1) and (2). (c), (d), (e) are the SR
result of Baseline #1, Baseline #2 and proposed method, re-
spectively.

We compare the visual quality of different SR methods on
the region of interest of channel # 840 - 875, corresponding
to Cobalt Kbeta XRF peak, in Figure 4. Our proposed dictio-
nary learning technique (Equation (1) and (2)) can denoise the
original LR XRF image (a) to obtain an LR XRF image with
higher SNR (b). Baseline #1 method directly applies SR [5]
on the noisy channel in (a), resulting in an noisy output (c).
Baseline #2 method applies SR [5] on the denoised channel in
(b), producing a noise-free output (d). The proposed method
applies SR on the sparse coefficient map, utilizing the corre-
lation information along the spectral dimension, resulting in
a sharper result, as shown in (e).

5. CONCLUSIONS

In this paper we presented a novel XRF image SR framework
based on dictionary learning. The spectrum of each pixel is
sparsely represented using a learned dictionary, with a spa-
tial smoothness constraint enforced on the sparse coefficient
map. The spatial resolution of the sparse coefficient maps are
increased using conventional image SR methods. Finally the
HR XRF images are reconstructed from the spectral dictio-
nary and the HR sparse coefficient maps. We performed ex-
periments with the XRF scan of the “Bedroom”, and showed
that our proposed method outperforms the base-line methods
in terms of both HR image quality and computational speed.
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