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Abstract

A transmission matrix describes the input-output rela-
tionship of a complex wavefront as it passes through/reflects
off a multiple-scattering medium, such as frosted glass or
a painted wall. Knowing a medium’s transmission matrix
enables one to image through the medium, send signals
through the medium, or even use the medium as a lens. The
double phase retrieval method is a recently proposed tech-
nique to learn a medium’s transmission matrix that avoids
difficult-to-capture interferometric measurements. Unfortu-
nately, to perform high resolution imaging, existing dou-
ble phase retrieval methods require (1) a large number of
measurements and (2) an unreasonable amount of compu-
tation. In this work we focus on the latter of these two
problems and reduce computation times with two distinct
methods: First, we develop a new phase retrieval algorithm
that is significantly faster than existing methods, especially
when used with an amplitude-only spatial light modulator
(SLM). Second, we calibrate the system using a phase-only
SLM, rather than an amplitude-only SLM which was used
in previous double phase retrieval experiments. This seem-
ingly trivial change enables us to use a far faster class of
phase retrieval algorithms. As a result of these advances,
we achieve a 100× reduction in computation times, thereby
allowing us to image through scattering media at state-
of-the-art resolutions. In addition to these advances, we
also release the first publicly available transmission ma-
trix dataset. This contribution will enable phase retrieval
researchers to apply their algorithms to real data. Of par-
ticular interest to this community, our measurement vectors
are naturally i.i.d. subgaussian, i.e., no coded diffraction
pattern is required.

∗Contributed equally.
This work was supported in part by DARPA REVEAL grant HR0011-

16-C-0028, ONR grant N00014-15-1-2735, ARO grant W911NF-12-1-
0407, and the Big-Data Private-Cloud Research Cyberinfrastructure MRI-
award funded by NSF under grant CNS-1338099 and by Rice University.

(a) System Diagram

(b) Incident Image x (c) Speckle Pattern y (d) Reconstruction x̂

Figure 1: (Top) A sketch of our experimental setup. (Bot-
tom) A smiley face, the speckle pattern it produces when
transmitted through a multiple-scattering media, and our re-
construction of the smiley face from the speckle pattern.
Phase retrieval algorithms can recover the original image
from the speckle pattern.

1. Imaging through multiple-scattering media
At first glance, seeing through multiple-scattering media

seems like an impossible task. Any light incident on the me-

In addition, C. Metzler was supported in part by the NSF GRFP, C. Met-
zler and R. Baraniuk were supported in part by NSF CCF-1527501 and
CCF-1502875, and O. Cossiart was supported in part by NSF CAREER
IIS-1453192.



dia will undergo multiple reflections. Thus if we illuminate
an object with coherent light, the resulting wavefront will
constructively and destructively interfere with itself, and a
“speckle pattern” will be produced on the far side of the
scatterer. This speckle pattern generally bears no resem-
blance to the original image. See Fig. 1.

In [11, 31], the authors developed the double phase re-
trieval method to reconstruct an image on the far side of a
scatterer from its speckle pattern. The key enabler of this
ability is learning a scattering material’s transmission ma-
trix (TM).

A TM characterizes the input-output relationship of a co-
herent light source as it passes through a multiple-scattering
medium. The scattering process is linear and thus coher-
ent incident light x ∈ CN will produce an output z ∈
CM , where z = Ax + ε, A is the TM, and ε represents
noise. Typical cameras capture only intensity information,
in which case the measurement process becomes

y2 =
∣∣Ax + ε

∣∣2,
with y ∈ RM+ denoting the measurements and the square
taken element-wise. In this work we take the square of the
intensity measurements and deal with y =

∣∣Ax + ε
∣∣.

If one knows the TM A then one can use phase retrieval
algorithms to reconstruct a signal x from measurements y.
Thus phase retrieval algorithms can be used to see through
multiple-scattering media.

This promise comes at a price; one needs to first learn the
TM. Learning a TM can be accomplished by using a spa-
tial light modulator (SLM) to create a series of calibration
images and then solving a series of phase retrieval prob-
lems [11]. Physically, assuming we want to avoid com-
pressive techniques, we must take over 4× as many mea-
surements as the desired resolution. Computationally, we
must then solve a proportional number of phase retrieval
problems. Using existing techniques, learning a TM to im-
age at 128 × 128 resolutions would require capturing over
65,000 images, which takes about 24 hours. Solving the
corresponding phase retrieval problems would then require
roughly 1 million CPU hours.

In this paper we reduce this extreme computational bur-
den in two ways. First, we develop a new phase retrieval al-
gorithm, prVAMP, which runs far faster than existing meth-
ods. Second, we propose using a phase-only SLM, rather
than an amplitude-only SLM, to learn a TM. This change
dramatically eases the calibration procedure, as it allows us
to use a far broader class of phase retrieval algorithms.

In addition, we release a dataset to the optics and phase
retrieval communities so that TMs can be studied and so that
newly developed phase retrieval algorithms can be applied
to real-world data.

1.1. What about compressive measurements?
Without prior information, M ≥ 4N − 4 phaseless mea-

surements are sufficient [3] to reconstruct a signal. How-
ever, when prior information, like sparsity, is available po-
tentially far fewer measurements are required [25]. Thus a
natural way to reduce the computational cost of learning the
TM is to simply reconstruct fewer rows of the TM. This was
the technique employed in [31] and [43].

In this work, we chose not to pursue this line of research
and instead focused on experiments where M ≥ 4N . We
made this decision because most of the objects we would
eventually like to image, for instance a person, are optically
rough. That is, the surface depths between adjacent pix-
els vary by more than a wavelength. As a result, although
the amplitude of the signal may be very structured, and thus
well captured in a sparse basis, the phase, which depends on
surface depth, follows an i.i.d. uniform distribution. Thus
the signal is not sparse in any basis [20]. Other regulariza-
tion techniques, like denoisers, are not easily applied to the
optically rough signals either.

2. Related work
2.1. Imaging through scattering media

Starting with [13], a host of techniques have been used to
recover signals that were passed through or reflected off of
scattering materials. We describe some of the most promis-
ing techniques here.

2.1.1 Time-of-flight

Time-of-flight (ToF) imaging systems rely upon the fact
that a photon’s propagation time depends on both where the
photon came from and how many times it scattered before
reaching the detector. This fact allows one to use a pulsed or
modulated laser and some sort of temporal gating to accept
only ballistic photons (photons that were never scattered)
from a region of interest. This allows the system to effec-
tively ignore the scattering material, at the cost of reduced
light throughput.

In [39] the authors used a streak-camera based setup to
recover the shape of a 3D mannequin placed outside the
line-of-sight of a camera. In [26] the authors showed that
is possible to capture the surface reflectance of an object
with a similar ToF system. More recently, [17] noted the
high-cost of the streak-camera based setup and proposed a
cheaper photonic mixer devices based approach which they
used to image through water that was contaminated with
milk. This method was further improved upon in [37].

ToF systems have a number of advantages. For instance,
they allow one to co-locate the detector and the light source
and they can handle rapidly changing scattering media, like
fog. Unfortunately, ToF systems rely upon ballistic photons
and therefore cannot deal with thick scatterers, which are
the focus of this work.



2.1.2 Multi-slice light-propagation

As the name implies, the multi-slice light propagation
method models a scattering material as a series of 2D scat-
tering slices between which light propagates. Rather than
learning a TM, which blindly maps inputs to outputs, the
multi-slice propagation method learns a composition of lin-
ear transformations.

The multi-slice light propagation method was first de-
scribed in [38]. In that work the authors use ptyochographic
methods to reconstruct a 3D tomogram of algae. The multi-
slice light propagation method was subsequently used with
holographic measurements in [18]. In that work the model’s
linear transformations were represented as a neural network
and the neural network was optimized to match the mea-
surements. This procedure produced accurate 3D recon-
structions of human cells placed between glass slides.

Among the methods presented here, multi-slice light
propagation is uniquely suited to perform 3D reconstruc-
tions. Moreover, it provides information about the actual
structure/composition of the scattering material. However,
the multi-slice approach does not model reflections within
the scatterer and it is unclear how well this method works
with thick scattering materials.

2.1.3 Strong memory effect

A scatterer is said to exhibit the strong memory effect if
a translation by the target, e.g. the smiley face in Fig.
1, produces only a translation in the resulting speckle pat-
tern [14]. This property was recently used to enable single
shot imaging through a multiple-scattering material [19]. In
that work, the authors showed that when the strong mem-
ory effect holds the autocorrelation of an object of interest’s
speckle patterns becomes equal to the autocorrelation of the
object. This property allows phase retrieval algorithms to
recover the original signal from its speckle pattern.

It is amazing single-shot imaging works at all, and this
technique holds great promise for imaging through thin bi-
ological tissues. However, the strong memory effect is an
unrealistic assumption for imaging at a macroscopic scale.
Using a relaxed version of the strong memory effect is an
interesting direction for future work.

2.1.4 Holographic interferometry

Holographic interferometry can be used to help learn a ma-
terial’s TM. After one has measured the TM, one can image
through multiple-scattering media by solving simple inverse
problems.

To learn a TM using holographic interferometry one first
measures a large number of the complex-fields of responses
to calibration signals. These fields are each measured by
capturing four interference pattern with a separate reference
beam. With these fields in hand, one sets up a matrix inver-
sion problem to learn the TM.

Holographic interferometry was first used to acquire a
scattering material’s TM in [28]. That work also represents
the first paper to compute an optical TM. Using TMs cap-
tured with holographic interferometry, [28] and [21] per-
formed imaging through multiple-scattering media.

Unlike the previously described methods, this technique
can deal with scattering materials of arbitrary depths and
complexities. Unfortunately, this method comes with a ma-
jor drawback. Because it relies on interferometry, the sys-
tem requires physical stability and so is very sensitive to
perturbations; even minute vibrations, such as those caused
by an air conditioning unit turning on and off in a lab, can
be enough to change the interference pattern and thereby
kill this method. This problem becomes particularly perni-
cious at higher resolutions where the physical stability re-
quirement becomes more and more demanding.

2.1.5 Temporally modulated phase

By temporally modulating the phase of calibration signals,
one can interferometrically measure a TM1 without a sepa-
rate, troublesome reference arm.

At a high level, the temporally modulated phase method
works as follows. Half the SLM’s pixels’ phase delays are
modulated in time, each at a unique frequency. At the same
time, the other half of the SLM’s pixels’ phase delays are
fixed at zero to serve as a reference. The two sets of sig-
nals pass through the multiple-scattering material and in-
terfere with one another. The resulting scene on the detec-
tor becomes a superposition of many interference patterns
which, because the phase delays are modulated in time, are
themselves sinusoidal functions of time. A video of the in-
terference patterns is captured and the sequence of frames
associated with each detector pixel is Fourier transformed
(with respect to time). Because, the interference patterns
are multiplexed in frequency the Fourier transform serves
to separate them: the phase of the Fourier coefficient as-
sociated with each modulation frequency becomes the TM
value of the SLM pixel associated with that modulation fre-
quency. The process is repeated with the role of reference
and signal groups swapped to learn the other half of the TM.

The aforementioned method was originally developed in
[7] to measure a single row of a TM. In [42], the authors
extended the method to work with detector arrays and so
measured a 2 dimensional TM. Both works validated their
matrices by focusing through a scattering media, but did not
perform imaging.

Temporal modulation of phase can be used to learn TMs
quickly, without a separate reference beam, and without
phase retrieval algorithms. However, as mentioned in foot-

1With phase only modulation (rather than amplitude and phase modu-
lation), the temporally modulated phase method does not measure the TM
but rather a very related quantity; the phase modulation patterns that would
most excite each pixel on the detector. They would be equivalent if each
pixel on the SLM contributed equally to each pixel on the detector.



note 1, this method does not learn the true TM. Further-
more, the SLM and camera refresh rates limit the maximum
resolution. In [42] the authors demonstrated an SLM reso-
lution of 33× 30.

2.1.6 Double phase retrieval

Double phase retrieval, the focus of this work, is another
method that uses TMs for imaging. The key idea behind
this method is that if one measures a sufficient number of
the intensities of responses to calibration signals, one can
use phase retrieval techniques to learn the TM. This method
will be described more thoroughly in Section 3.3.

The double phase retrieval method was first proposed in
[31] based off of work done in [11]. In [31] the authors
performed very low resolution imaging using the prSAMP
algorithm [30]. These experiments were repeated success-
fully at 64×64 resolutions in [43] using the prVBEM algo-
rithm [10]. Following the submission of the current work,
[27] learned a 157× 100 TM (SLM resolution of 10× 10)
using a phase-only SLM and the PhaseCut algorithm [41].
They proceeded to use phase-only wavefront shaping to
spell “Michigan” on the far side of a scatterer.

Compared to other techniques, the double phase retrieval
method is cheap, robust, and easy to setup. Like other TM
methods, this technique can deal with scattering materials
of arbitrary depths and complexities. Unlike most other
methods, this procedure is able to reconstruct signal after
capturing only a single image.

This approach does come with two drawbacks however:
First, it requires capturing a large number of measurements,
and thus is not well suited for rapidly changing scattering
materials like fog. Second, at calibration it requires solving
a large number of phase retrieval problem, which can induce
a large computational cost. This work focuses on solving
the latter of these two problems.

2.2. Phase retrieval algorithms
Phase retrieval algorithms reconstruct signals from the

magnitudes of linear transformations of the signal. More
formally, phase retrieval algorithms solve the following
problem.

Given observation y = |Φx|, with Φ known, determine x.
(1)

The matrix Φ is known as the measurement matrix. In
the context of this work, the measurement matrix is either
the TM A or the calibration matrix XH , which will be de-
fined in Section 3.3.

2.2.1 Alternating projection methods

Alternating projection methods, such as the seminal Fienup
[12] and Gerchberg-Saxton (GS) [15] algorithms, were the
first algorithms to solve the phase retrieval problem. These

Algorithm N = 82 N = 162 N = 322

prGAMP 0.07 0.39 9.64
prSAMP 3.52 54.80 826.79
prVBEM 0.22 2.66 105.74
prVAMP 0.44 0.48 6.79
GS-50 0.15 1.78 30.56
GS-100 0.26 3.41 60.26
WF-50 0.09 1.50 30.30
WF-500 0.69 14.22 244.54
PhaseLift 5.00 201.00 12321
PhaseMax 0.48 2.85 104.46

Table 1: Running times (in seconds) of various phase re-
trieval algorithms with 12·N i.i.d. CN (0, 1) measurements.
Unless noted otherwise, all algorithms are run for 50 itera-
tions. Notice at higher resolutions prGAMP and prVAMP
are the fastest.

Preprocessing Step N = 82 N = 162 N = 322

Economical SVD 0.52 0.50 19.92
Pseudoinverse 0.59 0.62 24.80

Table 2: The computation times (in seconds) of one-time
preprocessing operations associated with 12 ·N ×N mea-
surement matrices. prVAMP requires an economical SVD
of the measurement matrix and GS requires a pseudoinverse
of the measurement matrix. These values can then be reused
for all phase retrieval problems using the same measure-
ment matrix.

algorithms alternatively project estimates of the signal from
the target domain to the measurement domain such that the
estimate eventually lies on the same support as the target
and would produce the observed measurements.

Alternating projection methods are often derived and
presented with Fourier measurements, as this arises in pty-
chography, astronomical imaging, and a variety of differ-
ent imaging modalities that rely upon Fraunhofer diffrac-
tion. However, they can be extended to handle arbitrary
measurements by recognizing that the pseudoinverse of the
measurement matrix serves to both map from the measure-
ment space to the target space and project onto the target’s
support.

2.2.2 Convex relaxations and gradient descent

In the last five years, phase retrieval has become the focus
of intense renewed interest. A host of recovery algorithms
have been developed to deal with general linear transforma-
tions, rather than focusing on Fourier measurements. These
methods include the well-known PhaseLift [6] and Phase-
Cut [41] lifted convex relaxations, as well as the stochas-



tic Wirtinger Flow (WF) [5] algorithm. More recently, a
convex relaxation of the phase retrieval problem that avoids
lifting, termed PhaseMax, was independently developed in
[16] and [1].

2.2.3 Approximate message passing

Approximate message passing algorithms form an interest-
ing family of heuristic algorithms that solve inverse prob-
lems involving generalized linear measurements,2 including
the phase retrieval problem (1). They are based off of the
approximate message passing (AMP) algorithm [9] and its
generalization GAMP [32], which were originally designed
to solve the compressed sensing problem. The first AMP
algorithm designed for phase retrieval was prGAMP [35].
This was followed by the prVBEM algorithm [10], which
is more robust to noise; prSAMP [30], which can handle a
broader class of measurement matrices; and most recently
D-prGAMP [23], which uses denoisers to impose complex
priors on the reconstructed signal. In Section 4 we will in-
troduce a new phase retrieval algorithm, prVAMP.

The AMP algorithms are all heuristic algorithms and so
at best offer only asymptotic guarantees. In the case of
the phase retrieval problem, most AMP algorithms offer no
guarantees at all. Despite this shortcoming, in practice they
offer remarkable performance. They are accurate, robust to
noise, generally very fast, and can easily incorporate priors
into the reconstruction. In Figs. 2 and 3 we see that the
AMP algorithms perform phase retrieval as well as or bet-
ter than competing methods when the measurements follow
i.i.d. circularly symmetric complex Gaussian distributions.3

In Table 1 we see that the prGAMP and prVAMP AMP-
based algorithms perform these reconstruction far faster
than competing methods. Details of the settings used in
these simulations are presented in Section 4.3.2.

Unfortunately, until recently, AMP algorithms came
with an Achilles’ heel; they required that the measurement
matrix has i.i.d. subgaussian, zero-mean elements. When
the measurements do not satisfy these assumptions, as is the
case in the experimental setup of [11] and in Section 4, the
performance of AMP plummets [4]. This can be alleviated
somewhat with damping (updating the estimate of the sig-
nal gradually with small steps), but this slows convergence
considerably [33].

The authors of prSAMP dealt with the challenging mea-
surement matrices from [11] by making the parallel updates
with AMP sequential [30], as was first done for the com-
pressed sensing problem in [22]. Thanks to these sequen-
tial updates, prSAMP outperforms prGAMP and prVBEM

2Generalized measurements are any measurements of the form y =
Q(Ax+ ε), where Q(·) denotes a simple nonlinearity.

3We use the notation CN (0, σ2) to denote the circularly symmetric
Gaussian distribution. A random variable follows a circularly symmet-
ric complex Gaussian distribution if its real and imaginary parts are each
statistically independent and follow identical zero-mean Gaussian distri-
butions.

Figure 2: Simulated 32 × 32 reconstructions with various
phase retrieval algorithms from 12·322 i.i.d. CN (0, 1) mea-
surements. GS-50 and GS-100 denote the GS algorithm run
for 50 and 100 iterations, respectively. When run for a suf-
ficient number of iterations, all algorithms faithfully recon-
struct the signal.

when dealing with poorly conditioned matrices. Unfortu-
nately, the sequential updates mean prSAMP gives up AMP
algorithms’ main advantage; fast computational times. In
Table 1 we compare the run-times of various phase re-
trieval algorithms.4 At even moderate resolutions prSAMP
is nearly one hundred times slower than prGAMP. To deal
with this computational complexity, researchers have devel-
oped methods that split the overall phase retrieval algorithm
into smaller subproblems [29]. While effective, this method
degrades the performance of the algorithm and complicates
implementation.

In this work we avoid the Achilles’ heel of AMP phase
retrieval algorithms in two ways. First, we extend the
recently developed vector-AMP (VAMP) [34, 36] algo-
rithm, to solve the phase retrieval problem. Our extension,
prVAMP, offers the speed of prGAMP with the robustness
(in terms of measurement matrices) of prSAMP. Vector-

4Table 1 does not include computation times associated with prepro-
cessing operations. prVAMP and GS must perform an economical SVD
and a pseudoinverse, respectively, of the measurement matrix. The com-
putations times associated with these operations are presented in Table 2.
In the context of double phase retrieval, these operations have a negligi-
ble effect on the overall runtime because they can be done once and then
reused tens of thousands of times for different problems.



Figure 3: Simulated 16 × 16 reconstruction errors at various sampling rates with i.i.d. CN (0, 1) measurements. The AMP-
based algorithms reconstruct the signal with fewer measurements than many competing methods.

AMP and our extension will be briefly reviewed and intro-
duced in Section 4. Second, we make a minor change to
the experimental setup that lets us avoid nonzero-mean ma-
trices. This allows us to use prGAMP, the simplest AMP-
based phase retrieval algorithm.

2.2.4 Reporting Simulations Results

Throughout this work, when we report simulation results
we do so in terms of median normalized mean squared er-
ror (NMSE). Phase retrieval solutions are ambiguous up to
a global phase rotation. That is, if xo is a solution, then so
is xoe

jφ for any φ. Therefore, prior to computing the nor-
malized mean squared error, we disambiguate the solution:
we determine the global phase rotation that would minimize
the error. For the oversampling and the noise-sensitivity ex-
periments, we ran each algorithm for 50 trials and reported
the median NMSE. For the smiley face reconstruction ex-
periments, we performed 10 trials and returned the estimate
with the median NMSE.

3. Problem Description
3.1. Notation

We will use the following notation throughout the rest of
the paper. Matrices will be denoted with bold upper case
letters, A. Vectors will be denoted with bold under case
letters, a. Scalar variables will be denoted with unweighted
under case letters, a.

3.2. Physical setup
At a high level, our setup, illustrated in Fig. 1, is as fol-

lows. A laser illuminates an SLM and the SLM modulates
the light with some pattern x (the smiley face). The modu-
lated light is incident on a multiple-scattering material. The

scattering material may be transmissive (as shown) or re-
flective. The scattered light constructively and destructively
interferes with itself to form a speckle pattern. This speckle
pattern is photographed by a consumer-level camera to pro-
duce measurements y2 = |Ax + ε|2, where ε represents
noise.

3.3. Double phase retrieval approach
This subsection describes the double phase retrieval ap-

proach to imaging through complex scattering media. This
method gets its name from the fact that phase retrieval is
performed twice: once for calibration and once for imag-
ing. [11] was the first work to learn a TM this way. [31]
was the first work to then use such a TM for imaging.

3.3.1 Calibration

We first send a series of calibration patterns xp ∈ RN with
p = 1, ...P , through the scattering media. For each p, the
signal will be transformed by the TM A ∈ CM×N , to pro-
duce measurements yp ∈ RM+ , with

yp = |Axp + εp|,

where εp denotes noise.5 Actual calibration patterns and
their corresponding measurements are illustrated in Fig. 4.

The sets of calibration, measurement, and noise column
vectors are then concatenated with themselves to form X =[
x1,x2, ...xp

]
∈ RN×P , Y =

[
y1,y2, ...yp

]
∈ RM×P+ ,

and E =
[
ε1, ε2, ...εp

]
∈ CM×P .

5In this work we have used long exposure times and strong illumination
in hopes that the noise vectors εp follow approximately white circularly-
symmetric complex Gaussian distributions.



(a)

(b)

Figure 4: Calibration patterns with amplitude-only modu-
lation (top-left) and phase-only (bottom-left) and the corre-
sponding measured speckle patterns (right).

In this way the entire calibration process can be de-
scribed by the equation

Y = |AX + E|.

Taking the transpose of the above equality, we obtain

YH = |XHAH + EH |.

Consider the mth column of YH (this consists of the P
measurements associated with the mth detector pixel)

yHm = |XHaHm + εHm|, (2)

where aHm and εHm denote the mth rows of A and ε.
Assuming P is sufficiently large (generally P > 4N ),

one can apply phase retrieval algorithms to (2) to recover
each row aHm; simply treat yHm as the measurement and XH

as the measurement matrix. This can be repeated for each of
the M rows of A, potentially in parallel, to learn the entire
TM.

3.3.2 Imaging

After one has an estimate Ã of the TM, imaging through the
scattering medium is straightforward. Given a speckle pat-
tern y, ones needs only apply phase retrieval algorithms to
the measurements with Ã as the known measurement ma-
trix. Reconstruction results with real-world data are pre-
sented in Fig. 5.

(a) SLM Source x (b) Speckle Pattern y

(c) Reconstruction x̂ (d) Denoised Reconstruction

Figure 5: (a) A 64× 64 amplitude SLM pattern incident on
the scatterer. (b) The corresponding 256× 256 speckle pat-
tern captured on the detector. (c) The SLM pattern recon-
structed via the TM calibrated using the prVAMP algorithm.
(d) The reconstruction after BM3D denoising is applied.

4. A Fast and Robust Phase Retrieval
Algorithm

The central algorithmic contribution of our paper is a
new AMP-based phase retrieval algorithm that has excep-
tional run-times and performance, even when the measure-
ment matrix’s elements are not zero-mean i.i.d. subgaus-
sian.

4.1. The Algorithm
Rangan, Schniter, and Fletcher recently developed a sig-

nificant extension to AMP, called vector-AMP (VAMP)
[34]. VAMP handles ill-conditioned nonzero-mean matri-
ces without excessive damping nor sequential updates, both
of which hurt computation times. In a follow-up work, the
authors extended VAMP to solve generalized linear models,
creating VAMP-GLM [36]. In this subsection we briefly re-
view VAMP and VAMP-GLM and then introduce our ex-
tension, prVAMP, which uses the VAMP-GLM framework
to solve the (compressive) phase retrieval problem.6

6The phase retrieval problem is compressive when there are fewer un-
knowns than required to recover the signal without prior information. It is
not the focus of this work; we assume we have high resolution measure-
ments of the signal (M >> N ).



4.1.1 VAMP-GLM

VAMP is an evolution of AMP that is able to handle a
far broader class of measurement matrices. In particular,
whereas AMP has guaranteed asymptotic convergence only
when the measurement matrix has i.i.d. zero-mean subgaus-
sian elements [2], VAMP converges asymptotically for all
right rotationally invariant matrices7 [34]; a far larger set of
matrices.

VAMP-GLM is a generalization of VAMP that solves in-
verse problems involving generalized linear measurements
(GLM). GLMs are defined to be any measurement of the
form

y = Q(z + ε) with z = Φx, (3)

where x is our signal of interest, ε is noise, andQ(·) denotes
a simple non-linearity.

VAMP-GLM works by first splitting the vectors x and
z into two sets of identical vectors x1 and x2 and z1 and
z2. Iterations of the algorithm then broadly consist of four
steps: Two denoising steps which impose priors on x1 and
z1 and two linear minimum mean squared error (LMMSE)
estimation steps which ensure x2 and z2 are consistent with
the measurements y.

VAMP-GLM is presented in Algorithm 1. Within the
algorithm x̂ and ẑ terms are estimates of x and z, r and
p terms act as noisy observations of x and z, the γ and τ
terms track variances, and the α and β terms are divergence
terms used to estimate variances and compute the Onsager
correction, which is described later.

On line 4 the algorithm denoises the estimate of the sig-
nal x with the function gx1(·). On line 8 the algorithm de-
noises the estimate of the signal z with the function gz1(·).
On line 12 it performs LMMSE estimation of x with the
function gx2(·). Finally, on line 17 it perform LMMSE es-
timation of z with the function gz2(·).

The LMMSE estimation steps are what differentiate
VAMP and VAMP-GLM from previous AMP and GAMP
algorithms. Note that the measurement matrix Φ and ob-
servations y do not explicitly show up in the algorithm but
are instead modeled within the g(·) functions. See [36] for
the full form of gx2(·) and gz2(·). We used a Gaussian prior
on x to set gx1(·); see [32].

Like other AMP algorithms, the exceptional perfor-
mance of VAMP-GLM is in large part due to the Onsager
correction terms; the αr and βp terms in Algorithm 1.
These terms debiase intermediate results in the algorithm
so that at every iteration the denoiser gx1(·) is denoising
the true signal plus additive white Gaussian noise. See
[9, 24, 32, 34] for more information about the Onsager cor-
rection term.

7A matrix A is right-rotationally invariant if it can be written in the
form A = USVt, with V uniformly distributed over the group of or-
thogonal matrices.

Algorithm 1 VAMP-GLM

1: Initialize: r10, p10, γ10, τ10
2: for k=0, 1, ..., K do
3: Denoise x:
4: x̂1,k = gx1(r1,k, γ1,k), α1,k = 〈g′x1(r1k, γ1,k)〉
5: r2k = (x̂1,k − α1,kr1k)/(1− α1,k)
6: γ2k = γ1k(1− α1,k)/α1k

7: Denoise z:
8: ẑ1,k = gz1(p1k, τ1k), β1k = 〈g′z1(p1k, τ1k)〉
9: p2k = (ẑ1k − β1kp1k)/(1− β1k)

10: τ2k = τ1k(1− β1k)/β1k
11: LMMSE estimation of x:
12: x̂2k = gx2(r2k,p2k, γ2k, τ2k)
13: α2k = 〈γ′x2(r2kp2k, γ2k, τ2k)〉
14: r1,k+1 = (x̂2k − α2kr2k)/(1− α2k)
15: γ1,k+1 = γ2k(1− α2k)/α2k

16: LMMSE estimation of z:
17: ẑ2k = gz2(r2k,p2k, γ2k, τ2k)
18: β2k = 〈g′z2(r2k,p2k, γ2k, τ2k)〉
19: p1,k+1 = (ẑ2k − β2kp2k)/(1− β2k)
20: τ1,k+1 = τk2(1− β2k)/β2k
21: Return x̂1K .

4.1.2 prVAMP

Our algorithm, prVAMP, is a special case of VAMP-GLM
when the output denoiser gz1(·) is designed to handle an
absolute value output nonlinearity; Q(·) = | · |. In this case,
the denoiser gz1(·) is a complicated expression involving
the ratio of two Bessel functions. See [35] for its form and
a derivation.

To implement prVAMP we modified the original VAMP-
GLM code. Code demonstrating prVAMP is available
within the GAMP project; https://sourceforge.
net/projects/gampmatlab/files/.

4.2. prVAMP Simulation Results
In this subsection, we compare the performance of

prVAMP to several other phase retrieval algorithms. We
restrict ourselves to i.i.d. uniformly distributed {0, 1}P×N
measurement matrices, which represent the modulations of
an amplitude-only SLM. See Section 5.1 for information
about the SLM.

4.2.1 Simulation Settings

For these tests we kept P = 12N , which we found offers
a reasonable trade-off between runtime and accuracy, and
tested at N = 322 resolutions. See Section 4.3.2 for infor-
mation about the algorithms’ parameters.

4.2.2 Simulation Results

Fig. 7 demonstrates that with an i.i.d. uniformly dis-
tributed {0, 1}P×N (amplitude-only) measurement matrix

https://sourceforge.net/projects/gampmatlab/files/
https://sourceforge.net/projects/gampmatlab/files/


Figure 6: Simulated reconstruction errors with varying amounts of measurement noise from 12·162 i.i.d. uniformly distributed
{0, 1} measurements. prVAMP and prSAMP are the most robust to noise.

prVBEM, prSAMP, prVAMP, and GS are far more accurate
than the other methods. Fig. 6 demonstrates that prVAMP
and prSAMP are the most robust to noise.

Recall from Table 1 in Section 2.2.3 that prGAMP,
prVAMP, GS, and Wirtinger Flow are significantly faster
than other algorithms. Thus prVAMP is the only fast, accu-
rate, and robust algorithm we tested.

4.3. prVAMP Experimental Results
In this subsection we provide a detailed description of

our experimental setup and demonstrate imaging through a
multiple-scattering material.

4.3.1 Physical Setup

Our physical setup is illustrated in Fig. 8. As shown in the
figure, a spatially filtered and collimated laser beam (λ =
632.8 nm) illuminates an SLM from Holoeye, which is a
transmissive type display (LC 2012) with 1024×768 resolu-
tion and 36 micrometer size square pixels, which modulates
the amplitude of the beam before the lens L (f = 150 mm),
which focuses it onto the scattering medium (a holographic
5 degree diffuser from Thorlabs). Then a microscope objec-
tive (Newport, X10, NA: 0.25) is used to image the SLM cal-
ibration pattern onto the sensor (Point Grey Grasshopper2,
pixel size 6.45 micrometer). Using this setup, we learned a
2562 × 642 TM using 12 · 642 calibration patterns.

4.3.2 Algorithmic Parameters

Throughout this paper we compare the performance of
eight phase retrieval algorithms; Gerchberg Saxon (GS),
Wirtinger Flow (WF), PhaseMax, Phase Lift, prSAMP,
prVBEM, prGAMP, and prVAMP. All of these algorithms
require parameter tuning of some sort and we have done our
best to maximize each of their performance with respect to
both accuracy and computation time. We describe the pa-
rameter tuning in this section. The parameter settings are
summarized in Table 3.

We initially ran all algorithms for 50 iterations. We
found that GS and WF benefited from more iterations and
so also ran GS for 100 and WF for 500.

We initialized each of the algorithms as follows.
prGAMP, prVAMP, GS, PhaseLift, and PhaseMax were ini-
tialized with random vectors. WF was fed its spectral ini-
tializer, described in [5]. prVBEM came with its own ini-
tializer which we left intact. prSAMP was sensitive to ini-
tialization and was much slower than prVBEM. Therefore it
was initialized with the solution produced by prVBEM, as
this greatly improved its performance without significantly
changing its runtime.

Unlike other phase retrieval algorithms, AMP-based al-
gorithms can easily incorporate, and in fact require, priors
about the reconstructed signals. For prSAMP, prGAMP,
and prVAMP we tuned the following three parameters for
each problem: the signal mean, the signal variance, and the
noise variance. We experimented with tuning parameters



Algorithm Iterations Initialization Signal Priors Other Parameters
prGAMP 50 Random vector Signal mean and variance and noise variance Damping = .8
prSAMP 50 prVBEM solution Signal mean and variance and noise variance Damping = .9
prVBEM 50 Initializes itself Noise variance, otherwise defaults Defaults
prVAMP 50 Random vector Signal mean and variance and noise variance Damping = .8
GS 50-100 Random vector None Defaults
WF 50-500 Spectral initializer None Defaults
PhaseLift 50 Random vector None Defaults
PhaseMax 50 Random vector None Defaults

Table 3: The parameters used for testing various phase retrieval algorithms.

Figure 7: Simulated 32 × 32 reconstructions with various
phase retrieval algorithms from 12 ·322 i.i.d. uniformly dis-
tributed {0, 1} measurements. Many algorithms algorithms
suffer, and prGAMP and WF fail, with this type of measure-
ment matrix. prVAMP successfully reconstructs the signal.

for prVBEM as well but found that doing so had negligible
effect on the reconstruction performance, ad so we used its
defaults. In all tests the signal mean was set to zero. In sim-
ulations the signal and noise variances were set to the oracle
truths. When dealing with real data, we used the prVBEM
algorithm to calculate an estimate of the signal and noise
variance for one row of the TM. These values were then
used to tune the other three AMP algorithms for all other
rows of the TM.

While using oracle means and variance for one set of al-

(a)

(b)

Figure 8: Experimental setup with an amplitude-only SLM.

gorithms and not for another is in some sense cheating, we
feel it is justified in the context of this work. To reconstruct
a 2562 × 642 transmission matrix with the double phase re-
trieval approach, one solves over 65000 statistically similar
phase retrieval problems. Therefore one has ample data to
use for parameter tuning.

In addition to signal priors, prGAMP, prSAMP, and
prVAMP have a damping parameter. Limited experimenta-
tion found a parameter of .8 worked well for prGAMP and
prVAMP and a parameter of .9 worked well for prSAMP.
These damping parameters are excessive when dealing with
Gaussian measurements, however we found they worked
well when reconstructing real-world data.

All other algorithm parameters were set to their default
values.



(a) SLM Source (b) Speckle Pattern (c) Initial Reconstruction after
Calibration with prVAMP

(d) Denoised Reconstruction

(e) SLM Source (f) Speckle Pattern (g) Initial Reconstruction after
Calibration with prVAMP

(h) Denoised Reconstruction

(i) SLM Source (j) Speckle Pattern (k) Initial Reconstruction after
Calibration with prVAMP

(l) Denoised Reconstruction

Figure 9: (a,e,i) The first column consists of 64 × 64 amplitude SLM patterns incident on the scatterer. (b,f,j) The second
column consists of the corresponding 256× 256 speckle patterns captured on the detector. (c,g,k) The third column consists
of the SLM patterns reconstructed via the TM calibrated using the prVAMP algorithm. (d,h,l) The fourth column corresponds
to the reconstructions after BM3D denoising is applied. The reconstructions demonstrate prVAMP was able to accurately
reconstruct the TM with an amplitude-only SLM.

When estimating the rows of the TM, we observed that
the solutions to the phase retrieval problem (2) had residu-
als varying between 0.1 and 1. A residual greater than 0.4
generally implied that the estimate for the row was inaccu-
rate. Therefore, during imaging, we discarded the rows of
the TM whose corresponding phase retrieval problems had
a residual higher than 0.4. In general, we found that the
algorithm had a residual smaller than 0.4 for most (about
98%) of the rows of the TM. After learning the TM we used
it to reconstruct images from their speckle patterns. Lastly,

we cleaned up the initial reconstructions with the BM3D
denoiser [8].

4.3.3 Computational Resources

Since the computations of each row of the TM are fully par-
allelizable, we used a high-throughput computing (HTC)
cluster to compute the TMs of the scattering media. The
cluster consists of 80 dual processor compute nodes, each
of which have two 8-core Intel E5 Ivy Bridge processors
running at 2.6 GHz. The compute nodes are each equipped



with between 32 GB and 128 GB of memory.

4.3.4 Results

Our reconstruction results can be found in Fig. 9. Using an
amplitude-only SLM and prVAMP for calibration we were
able to image through a multiple-scattering material at 64×
64 resolutions.

5. Algorithm-friendly TM Learning
Our physical contribution is a simple one; we switch

from an amplitude-only SLM to a phase-only SLM. In this
section, we explain why this minor change has profound
impacts on our ability to learn TMs. In particular, it enables
us to reconstruct TMs with the fast and simple prGAMP
algorithm [35], as well as a host of other phase retrieval al-
gorithms, like Wirtinger-Flow [5], that rely upon i.i.d. sub-
gaussian measurements.

5.1. Current: Amplitude-only SLM
As the name implies, an amplitude-only SLM modulates

the amplitude of the light passing through/off it. To max-
imize light throughput, we set each source pixel as either
completely off, 0, or completely on, 1. Thus with an SLM
with N source pixels, each of the calibration signal xp is an
element of {0, 1}N . Likewise, our “measurement matrix”
for calibration XH is an element of {0, 1}P×N .

AMP methods, introduced in Section 2.2.3, were derived
under the assumption that the measurement matrix con-
sisted of i.i.d. subgaussian zero-mean entries. Our measure-
ment matrix is clearly not zero-mean. Furthermore, because
we observe the absolute value of Ax, we cannot apply mean
removal [40]. Consequently we have no convergence guar-
antees and by default most AMP algorithms will diverge.

As described in Section 2.2.3, a number of methods have
already been developed to deal with these poorly behaved
matrices. These methods work by trading off convergence
speed for increased stability. Switching to a phase-only
SLM lets us avoid this trade-off.

5.2. Proposed: Phase-only SLM
The physical contribution of our work is changing from

an amplitude-only SLM to a phase-only SLM. At each
source pixel, the 8-bit phase-only SLM modulates the
incoming uniform complex wavefront by an element of
{exp 0, exp 2πi 1

256 , exp 2πi
2

256 , ... exp 2πi
255
256}. We re-

stricted ourselves to modulations of exp 0 and expπi,
which means XH ∈ {−1, 1}P×N .

The elements of our matrix XH ∈ {−1, 1}P×N follow
a zero-mean i.i.d. subgaussian distribution. Thus the matrix
satisfies the AMP assumptions and minimal damping is re-
quired. This means that we can apply the low cost prGAMP
algorithm with a large step size to perform fast and effective
phase retrieval. We can also apply other phase retrieval al-
gorithms that rely upon i.i.d. subgaussian measurements.

Figure 10: Simulated 32 × 32 reconstructions with various
phase retrieval algorithms from 12 ·322 i.i.d. uniformly dis-
tributed {−1, 1} measurements. These measurements are
zero-mean i.i.d. subgaussian and so all algorithms recon-
struct the signal to some degree.

5.3. Phase-only SLM Simulation Results
In this section, we validate our physical contributions in

simulation. In particular, we compare the performance of
various phase retrieval algorithm when used with uniformly
distributed {−1, 1}P×N measurement matrices. For these
tests we again kept P = 12N and kept resolutions at N =
322.

Fig. 10 demonstrates that with uniformly distributed
{−1, 1}P×N measurement matrices, all tested algorithms
can perform reconstruction successfully, albeit with slightly
more error than when the elements of the measurement ma-
trix are i.i.d. CN (0, 1). Fig. 11 compares the performance
of the algorithms at different noise levels when the measure-
ment matrix is uniformly distributed {−1, 1}P×N . In this
case, the performance of prGAMP is similar or better than
the other algorithms. At the same time, prGAMP, GS, WF,
and prVAMP enjoy the low computations times observed in
Table 1.

5.4. Phase-only SLM Experimental Results
In this section we provide a detailed description of our

experimental setup and demonstrate imaging through a
multiple-scattering medium.



Figure 11: Simulated reconstruction errors with varying amounts of measurement noise from 12 · 162 i.i.d. uniformly dis-
tributed {−1, 1} measurements. Notice prGAMP now performs comparably to the other AMP algorithms.

(a)

(b)

Figure 12: Experimental setup with a phase-only SLM.

5.4.1 Setup

The physical setup for the phase-only SLM is illustrated in
Fig. 12. It is very similar to the phase-only SLM setup
describe in Section 4.3.1. The biggest difference between
the two is that the phase-only SLM is reflective, whereas
the amplitude-only SLM is transmissive.

The algorithms were setup the same as they were in the
amplitude-only SLM tests. See Section 4.3.2 for more in-
formation. We again applied BM3D denoising [8] on the
reconstructed signals.

5.4.2 Results

Our reconstruction results can be found in Fig. 13. Using a
phase-only SLM and prGAMP for calibration we were able
to image through a multiple-scattering material at 40 × 40
resolutions.

6. A Public Transmission Matrix Dataset
Our third and most important contribution is the pub-

lic dissemination of our dataset. Our dataset, which in-
cludes the transmission matrices presented here, as well
as data captured for N = 1282 transmission matrices
that we did not have time to process, has been posted
to the following website: http://dsp.rice.edu/
research/transmissionmatrices/.

This dataset has at least two potential uses. First, the
high resolution TM, visualized in Fig. 14, may allow optics

http://dsp.rice.edu/research/transmissionmatrices/
http://dsp.rice.edu/research/transmissionmatrices/


(a) SLM Source (b) Speckle Pattern (c) Initial Reconstruction after
Calibration with prGAMP

(d) Denoised Reconstruction

(e) SLM Source (f) Speckle Pattern (g) Initial Reconstruction after
Calibration with prGAMP

(h) Denoised Reconstruction

(i) SLM Source (j) Speckle Pattern (k) Initial Reconstruction after
Calibration with prGAMP

(l) Denoised Reconstruction

Figure 13: (a,e,i) The first column consists of 40×40 phase SLM patterns incident on the scatterer. (b,f,j) The second column
consists of the corresponding 256 × 256 speckle patterns captured on the detector. (c,g,k) The third column consists of the
SLM patterns reconstructed via the TM calibrated using the prGAMP algorithm. (d,h,l) The fourth column corresponds to
the reconstructions after BM3D denoising is applied to the reconstructed SLM patterns. The reconstructions demonstrate
prGAMP was able to accurately reconstruct the TM with a phase-only SLM.

researchers to test new ideas and search for new properties,
without themselves having to measure a TM. The transmis-
sion matrix clearly has structure, and it is our hope future
researchers will figure out how to take advantage of it.

Second, this release provides algorithms researchers
with real-world data with which they can apply and test new
phase retrieval algorithms. The phase-SLM data may be of
particular interest. Many recently developed phase retrieval
algorithms rely upon i.i.d. subgaussian measurements. As
a result, they do not apply to most real-world datasets. Al-

though many of these methods could work with a coded
diffraction microscope [5], to our knowledge no such mi-
croscope yet exists. Our phase-SLM dataset represents a
real-world dataset for which the subgaussian measurements
requirement holds.

7. Discussion
In this work we have made three contributions; a new

algorithm, a new experimental design, and a new public
dataset. Our algorithm prVAMP, a special case of VAMP-



(a) Amplttude of TM

(b) Phase of TM

Figure 14: A visualization of the amplitude (a) and phase
(b) of a reconstructed TM. (Left) A column of the TM dis-
played as M ×M matrices. (Right) The entire transmis-
sion matrix. The amplitude visualization of the TM demon-
strates some structure.

GLM [36], works with {0, 1} measurements and runs hun-
dreds of times faster than competing methods. Our new
experimental design learns TMs using {−1, 1} i.i.d. sub-
gaussian measurements, thereby enabling a host of different
phase retrieval algorithm to be applied to the TM recovery
problem. Finally, the public release of our dataset will en-
able optics researchers to study TMs and will enable phase-
retrieval researchers to apply their algorithms to real-world
data.

Looking to the future, our high resolution TMs could
have a host of interesting uses. The unprecedented reso-
lution of our dataset might help researchers uncover new
scattering media properties, e.g., the strong memory effect,
which could in turn enable new imaging modalities. Alter-
natively, this public dataset could serve as a benchmark for
newly developed phase retrieval algorithms.
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