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Abstract: A number of computational imaging techniques have beendiired to improve
image quality by increasing light throughput. These teghas use optical coding to measure
a stronger signal level. However, the performance of theséniques is limited by the
decoding step, which amplifies noise. While it is well untleos that optical coding can
increase performance at low light levels, little is knowroabthe quantitative performance
advantage of computational imaging in general settingstifg analyses are limited in two
ways: (1) most analyses assume a signal independent nogssl aral ignore signal dependent
noise and (2) most analyses neglect to model scene priocsiréte analysis of multiplexing
imaging systems requires us to explicitly consider thectftd both signal dependent photon
noise and scene priors. In this work, we perform a carefulyéinal characterization of the
effects of multiplexing under (a) a noise model incorpargtboth signal dependent and
signal independent noise and (b) scene priors modeled BaitGaussian and as a mixture of
Gaussians (GMM). We then discuss the implications of theseds for several real-world
scenarios (illumination conditions, scene propertiessergor noise characteristics).
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1. Summary of Work

The focus of this work is on Computational Imaging (Cl) teicfues which are designed to improve performance
in terms of image quality. These techniques use opticalngpth increase light throughput and measure a stronger
signal level. Examples include multiplexed 2D imaging [[L-€pectroscopy [6, 7], color imaging [8, 9], light field
capture [10-12], illumination multiplexing [13-15], defas deblurring [10, 16, 17] and motion deblurring [18]. For
many CI techniques, there is a corresponding conventiomading technique that can measure the signal directly
without the need for any decoding. For example, narrow-tspattral filters can be used instead of a multiplexed
spectrometer, a stopped down aperture can be used to avoicudeblur and a shorter exposure can be used to
eliminate motion blur. In this work, we refer to this classcohventional imaging methods aspulse imaging. The
term impulse is meant to convey the small amount of light wegat by these methods. Fifj.gives some example
comparisons between Cl techniques and their impulse irgagpnnterparts. We first address an important question
in Cl system design: What is the performance advantage oftadBhique with respect to the corresponding impulse
camera? Since Cl techniques capture more light than impuging, it may appear that they must result in a higher
SNR. However, Cl involves a decoding step (see Ejgvhich amplifies noise, thereby lowering the signal-toseei
ratio (SNR). Image priors may be used to regularize the dagostep, but the same priors may also be applied to
impulse imaging as well. A straightforward example is in toatext of motion and defocusing deblurring cameras,
where an important open question remains: Is it better ttudel denoise?
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Fig. 1.Computational ver susI mpulse Imaging. (Left) Cl techniques discussed in this work can be
modeled using a linear image formation model. This inclutfecus deblurring, motion deblurring,
spectral multiplexing, and many others. In order to recdher desired image, these techniques
require an additional decoding step, which amplifies ngiRéght) Impulse imaging techniques
measure the signal directly without requiring any decodigtopped down aperture can be used to
avoid defocus blur, a shorter exposure can be used to avdidmriaur.

While a number of Cl systems have been proposed, their aaalgs mostly been limited in two important ways: (1)
they typically assume signal independent noise while maraging systems have significant signal dependent photon
noise, (2) analysis is performed without scene priors elrtendgh most state of art algorithms exploit scene priors. Our
goal is to address these limitations. We model scene prging @ither a Gaussian Model (GM) or a Gaussian Mixture
Model (GMM) and characterize the performance of a Cl systgritsomean square reconstruction error (MSE). This
results in an ability to compute the MSE in a tractable forimodgh the prior model and the resulting analysis is quite
simple, what is surprising is their ability to predict ancacicterize the performance of Cl systems.

Using a GMM to model prior distributions in image processprgblems like denoising and super-resolution has
led to impressive results [19], leading us to believe thahspriors are indeed state of the art. In addition, there are
three significant advantages with such a choice. First, GBIlwell characterized prior model and allows tractable
analytical characterization of the MSE [20]. Secondly, GN&\A universal prior in the sense that any prior distribution
can be approximated to any desired fidelity using a large rummbGaussian mixtures. This implies that if we could
learn very large number of mixture components, then thelteesf our analysis will apply to the state of the art
reconstruction techniques such as those based on spardarizgion, dictionary learning, non local means, etc.
Further, we also note that even the (single) Gaussian priach is a reduced form of the GMM, works quite well
in practice for various applications. Finally, GMM modebmncbe used to analyze both fully-determined and under-
determined (compressive) multiplexing systems. Thusdifiteon to the aforementioned Cl systems, our framework
can be used to analyze compressive acquisition systemsasutiie single pixel camera [21], compressive video
acquisition [22—24], compressive hyper-spectral imaf#ss26] and many others.
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