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Abstract: A number of computational imaging techniques have been introduced to improve
image quality by increasing light throughput. These techniques use optical coding to measure
a stronger signal level. However, the performance of these techniques is limited by the
decoding step, which amplifies noise. While it is well understood that optical coding can
increase performance at low light levels, little is known about the quantitative performance
advantage of computational imaging in general settings. Existing analyses are limited in two
ways: (1) most analyses assume a signal independent noise model and ignore signal dependent
noise and (2) most analyses neglect to model scene priors. Accurate analysis of multiplexing
imaging systems requires us to explicitly consider the effect of both signal dependent photon
noise and scene priors. In this work, we perform a careful analytical characterization of the
effects of multiplexing under (a) a noise model incorporating both signal dependent and
signal independent noise and (b) scene priors modeled both as a Gaussian and as a mixture of
Gaussians (GMM). We then discuss the implications of these bounds for several real-world
scenarios (illumination conditions, scene properties andsensor noise characteristics).
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1. Summary of Work

The focus of this work is on Computational Imaging (CI) techniques which are designed to improve performance
in terms of image quality. These techniques use optical coding to increase light throughput and measure a stronger
signal level. Examples include multiplexed 2D imaging [1–5], spectroscopy [6, 7], color imaging [8, 9], light field
capture [10–12], illumination multiplexing [13–15], defocus deblurring [10, 16, 17] and motion deblurring [18]. For
many CI techniques, there is a corresponding conventional imaging technique that can measure the signal directly
without the need for any decoding. For example, narrow-bandspectral filters can be used instead of a multiplexed
spectrometer, a stopped down aperture can be used to avoid defocus blur and a shorter exposure can be used to
eliminate motion blur. In this work, we refer to this class ofconventional imaging methods asimpulse imaging. The
term impulse is meant to convey the small amount of light captured by these methods. Fig.1 gives some example
comparisons between CI techniques and their impulse imaging counterparts. We first address an important question
in CI system design: What is the performance advantage of a CItechnique with respect to the corresponding impulse
camera? Since CI techniques capture more light than impulseimaging, it may appear that they must result in a higher
SNR. However, CI involves a decoding step (see Fig.1) which amplifies noise, thereby lowering the signal-to-noise-
ratio (SNR). Image priors may be used to regularize the decoding step, but the same priors may also be applied to
impulse imaging as well. A straightforward example is in thecontext of motion and defocusing deblurring cameras,
where an important open question remains: Is it better to deblur or denoise?
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Fig. 1.Computational versus Impulse Imaging. (Left) CI techniques discussed in this work can be
modeled using a linear image formation model. This includesdefocus deblurring, motion deblurring,
spectral multiplexing, and many others. In order to recoverthe desired image, these techniques
require an additional decoding step, which amplifies noise.(Right) Impulse imaging techniques
measure the signal directly without requiring any decoding. A stopped down aperture can be used to
avoid defocus blur, a shorter exposure can be used to avoid motion blur.

While a number of CI systems have been proposed, their analysis has mostly been limited in two important ways: (1)
they typically assume signal independent noise while many imaging systems have significant signal dependent photon
noise, (2) analysis is performed without scene priors even though most state of art algorithms exploit scene priors. Our
goal is to address these limitations. We model scene priors using either a Gaussian Model (GM) or a Gaussian Mixture
Model (GMM) and characterize the performance of a CI system by its mean square reconstruction error (MSE). This
results in an ability to compute the MSE in a tractable form. Though the prior model and the resulting analysis is quite
simple, what is surprising is their ability to predict and characterize the performance of CI systems.

Using a GMM to model prior distributions in image processingproblems like denoising and super-resolution has
led to impressive results [19], leading us to believe that such priors are indeed state of the art. In addition, there are
three significant advantages with such a choice. First, GMM is a well characterized prior model and allows tractable
analytical characterization of the MSE [20]. Secondly, GMMis a universal prior in the sense that any prior distribution
can be approximated to any desired fidelity using a large number of Gaussian mixtures. This implies that if we could
learn very large number of mixture components, then the results of our analysis will apply to the state of the art
reconstruction techniques such as those based on sparse regularization, dictionary learning, non local means, etc.
Further, we also note that even the (single) Gaussian prior,which is a reduced form of the GMM, works quite well
in practice for various applications. Finally, GMM models can be used to analyze both fully-determined and under-
determined (compressive) multiplexing systems. Thus, in addition to the aforementioned CI systems, our framework
can be used to analyze compressive acquisition systems suchas the single pixel camera [21], compressive video
acquisition [22–24], compressive hyper-spectral imagers[25,26] and many others.
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