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The resolution of a camera system determines the fidelity of visual features

in captured images. Higher resolution implies greater fidelity, and thus greater

accuracy when performing automated vision tasks such as object detection,

recognition, and tracking. However, the resolution of any camera is funda-

mentally limited by geometric aberrations. In the past, it has generally been

accepted that the resolution of lenses with geometric aberrations cannot be in-

creased beyond a certain threshold. We derive an analytic scaling law showing

that, for lenses with spherical aberrations, resolution can be increased beyond

the aberration limit by applying a post-capture deblurring step. We then show

that resolution can be further increased when image priors are introduced.

Based on our analysis, we advocate for computational camera designs con-

sisting of a spherical lens shared by several small planar sensors. We show

example images captured with a proof-of-concept gigapixel camera, demon-

strating that high resolution can be achieved with a compact form factor and

low complexity. We conclude with an analysis on the trade-off between per-

formance and complexity for computational imaging systems with spherical

lenses.
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1. Introduction

High resolution cameras enable images to be captured with significantly more details than

the human eye can detect, revealing information that was completely imperceptible to the

photographer at the time of capture. These cameras allow humans to explore minute details
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of a scene that may have otherwise been overlooked (see Figure 2), benefitting a variety

of applications including surveillance, inspection, and forensics. Because the performance of

low-level automated vision tasks depend highly on the amount image detail available, greater

resolution also helps with computer vision tasks such as object detection, recognition and

tracking. For these reasons and more, there is increasing demand for cameras with even

higher resolution than what is commercial available today. At present, highly specialized

gigapixel imaging systems are being developed for aerial surveillance [1].

While CMOS and CCD technologies have improved to the point that imaging sensors with

pixels in the 1µm range have been demonstrated [2], it remains a huge challenge to design

and manufacture lenses which have the resolving power to match the resolution of such a

sensor. This is because the number of resolvable points for a lens, referred to as the Space-

Bandwidth Product (SBP) [3], is fundamentally limited by geometrical aberrations. Ideally,

all lenses would be diffraction limited so that increasing the scale of a lens while keeping FOV

fixed would increase SBP. Unfortunately, SBP reaches a limit due to geometrical aberrations.

There are two common approaches that are taken to increase SBP in the face of this

fundamental limit. The first is to just accept the loss in resolution and increase sensor size.

As an example, consider the commercially available F/8 500mm focal length Schneider Apo-

Symmar lens. If this lens were diffraction limited, it would be capable of resolving a gigapixel

image on a 5”x5” sensor. However, because of geometrical aberrations, a sensor size of nearly
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Fig. 1. (a) An F/4 75mm lens design capable of imaging one gigapixel onto a

75x75mm sensor. This lens requires 11 elements to maintain diffraction limited

performance over a 60◦ FOV. (b) The MTF at different field positions on the

sensor.
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12”x12” is necessary to resolve a full gigapixel image.

The second approach taken to increase SBP is to increase complexity as a lens is scaled

up. Introducing more optical surfaces increases the degrees of freedom in lens optimization,

which can be used to reduce geometric aberrations and achieve diffraction limited perfor-

mance. Consider the F/4 75mm focal length lens shown in Figure 1. The lens is diffraction

limited over a 60◦ FOV so that a gigapixel image can be resolved on a 75mmx75mm surface,

much smaller than for the Apo-Symmar. The increase in performance comes at a great cost,

however. The design consists of 11 different elements, ranging from 60-100mm in diameter,

resulting in a lens that is both expensive to produce and difficult to align.

The following are the main contributions of our paper.

A Scaling Law for Computational Imaging. We present a new approach to increase

SBP - the use of computations to correct for geometrical aberrations. In conventional lens

design, resolution is limited by the spot size of the lens. For a lens with aberrations, spot size

increases linearly with the scale of the lens. For a computational imaging system, resolution

is related to deblurring error. We observe, however, that for a lens with spherical aberrations,

deblurring error does not increase linearly with lens scale. We use this remarkable fact to

derive a scaling law that shows that computational imaging can be used to develop cameras

with very high resolution while maintaining low complexity and small size. First, we ana-

lytically derive a closed form expression for the Point spread Function (PSF) and Optical

Transfer Function (OTF) of a lens with spherical aberration. We then use this expression to

derive a closed form solution for the deblurring error as a function of lens scale. We go on

to show how deblurring performance improves when image priors are introduced.

Gigapixel Computational Camera Designs. We present an imaging architecture that

consists of a large ball lens shared by an array of small planar sensors coupled with a deblur-

ring step. Due to our monocentric optical design, field-dependent aberrations are suppressed,

and the primary aberrations are spherical and axial chromatic, which are known to code im-

ages in a manner that is invertible via post-processing [4] [5] [6] [7]. We demonstrate a

proof-of-concept gigapixel camera that is implemented by sequentially scanning a single sen-

sor to emulate an array of tiled sensors. In addition, we present a single element gigapixel

camera design with a contiguous FOV.

Performancs vs. Complexity Analysis. We advocate the use of deblurring to remove

the effects of aberrations. However the quality of deblurred images depends on the MTF of the

lens, and a diffraction limited lens always has the best possible performance. Unfortunately,

achieving diffraction limited performance often requires increasing the complexity of the lens,

usually by increasing the number of surfaces. Lenses with greater complexity are typically

larger, heavier, more expensive to manufacture, and more difficult to align. We analyze the

trade-off between performance and complexity for the special case of spherical optics.

3



82,000 pixels

Resistor Dollar Bill 2D Barcode Fingerprint

22
,0

00

Fig. 2. A 1.7 gigapixel image captured using the implementation

shown in Figure 13. The image dimensions are 82,000 x 22,000 pixels,

and the scene occupies a 126◦x32◦ FOV. From left to right, insets re-

veal the label of a resistor on a PCB board, the stippling print pat-

tern on a dollar bill, a miniature 2D barcode pattern, and the fine ridges

of a fingerprint on a remote control. The insets are generated by apply-

ing a 60x-200x digital zoom to the above gigapixel image. Please visit

http://gigapan.org/gigapans/0dca576c3a040561b4371cf1d92c93fe/ to view

this example in more detail.

2. Related Work

2.A. Large Format Imaging Systems

A few custom high resolution imaging systems have been developed using large format lenses.

These include systems built with commercial lenses that sequentially scan a large image plane

surface [8] [9], as well as a system with a custom lens that is photographed on film and later

converted to a digital image [10]. These are special purpose cameras that are extremely large

(FL > 500mm). In Section 8 we show that it is possible to capture images at comparable

resolutions with a much smaller form factor.
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2.B. Camera Arrays and Multiscale Optics

Camera arrays have been used to capture high resolution images by tiling multiple sensors

paired with a complex lens [11] [12]. However, a camera array for gigapixel imaging would

be prohibitively large and expensive because it would require tiling an array of long focal

length lenses. A related approach taken by Brady and Hagen [13] is to use a multiscale

optical system consisting of a large single element lens coupled with an array of smaller

optical elements, each unique and coupled with a different sensor. The advantage of this

approach is that it is a compact design that can correct for geometrical aberrations. The

disadvantage is that the system requires a large number of different optical elements, which

may be difficult to manufacture and align.

2.C. Monocentric Optics and Curved Sensors

Monocentric optical designs are free of field dependent aberrations because they are com-

pletely symmetric: the image plane and each lens surface lay on concentric spheres. Mono-

centric designs date back to the Sutton Panoramic Lens (1859), and later the Baker Ball Lens

(1942) [14]. Luneburg proposed the use of a monocentric lens with varying index of refraction

to correct for aberrations [15]. Rim et. al proposed a small diffraction limited camera consist-

ing of a ball lens and curved sensor [16]. Krishnan and Nayar proposed the use of a large ball

lens and spherical sensor together with deblurring to create a single viewpoint, fully spherical

FOV camera [17]. While several researchers have made progress towards developing curved

sensors [18] [19] [20], the technology is not yet ready for commercialization.

Recently, Marks and Brady proposed a 7-element large format monocentric lens called

the Gigagon [21], which the authors suggest using with a large array of planar sensors. To

our knowledge this system has yet to be implemented, but is similar in architecture to some

of the designs we propose 1. Our approach is fundamentally different in that we show how

computations can be used to achieve the desired resolution while reducing complexity.

2.D. Computational Imaging

In the 90’s, Cathey and Dowski proposed a hybrid optical-signal processing system which uses

a cubic phase plate to extend depth of field [22]. Later they showed that the same element

can be used to reduce the complexity of infrared cameras [23]. Robinson and Stork observed

that spherical aberrations are easily invertible via image processing, and proposed the use

of simpler lens designs based on this principle [4] [5] [24]. Guichard et. al [6] and Cossairt

and Nayar [7] observed that the effects of axial chromatic aberrations can be inverted using

a method that is inexact, but produces images that look good.

1Similar camera designs are also being pursued by the DARPA MOSAIC project, led by David J. Brady.

Terrapixel Imaging, ICCP ’10 Invited Talk, Mar 2010.
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3. Diffraction Limited Resolution

Lohmann originally observed that lenses obey certain scaling laws that determine how reso-

lution increases as a function of lens size [25]. Consider a lens with focal length f , aperture

diameter D, and image size ∆x by ∆y. We introduce a scaling factor M , which is defined

such that M = 1 corresponds to a focal length of f = 1mm. If we scale the lens by a

factor of M , then f ,D, ∆x by ∆y are all scaled by M , but the F/# and FOV of the lens

remain unchanged. If, when we scale the lens, the minimum resolvable spot size has not also

increased by a factor of M , then we have increased the total number of points that can be

resolved. The number of resolvable points for a lens is referred to as the Space-Bandwidth

Product (SBP) [3]. SBP is a unit-less quantity that tells us the number of distinct points

which can be measured over a given FOV.

The minimum spot diameter of a lens due to diffraction is δd ≈ λF/#, where λ is the

wavelength of light. Since this quantity is independent of lens scale, the SBP for a diffraction-

limited lens is

Rdiff (M) =
M2∆x∆y

(λF/#)2
. (1)

The SBP increases quadratically with the scaling factor M (see the red curve in Figure 3).
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Fig. 3. A plot showing how Space-Bandwidth Product (SBP) increases as

a function of lens size for a perfectly diffraction limited lens (Rdiff ), a lens

with geometric aberrations (Rgeom), and a conventional lens design whose F/#

increases with lens size (Rconv).
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4. Aberrations and Image Quality

Ideally, all lenses would be diffraction limited, and resolution would scale quadratically with

lens size. Unfortunately, the resolution of most lenses is limited not by diffraction, but by

geometrical aberrations. This is because there is no lens shape that can produce a perfect

focus for all points on the image plane. The best we can do is to reduce aberrations to the

point that their effect is small compared to diffraction.

4.A. Aberration Theory

The Optical Path Difference (OPD) generalizes the concept of lens aberrations. The OPD

measures the distance between an ideal focusing wavefront and the actual wavefront prop-

agating through the lens as a function of normalized coordinates in the pupil plane (see

Figure 4). For radially symmetric lenses, the generalized OPD is a function of 2-D polar

coordinates {ρ ∈ [−1, 1], φ ∈ [0, π]} in the aperture plane, and the radial coordinate r on

the sensor plane. In optical design, the OPD W (ρ, φ, r) is typically expressed as a Siedel

polynomial, where each term in the polynomial represents a different type of aberration:

W (ρ, φ, r) =
∑

i,j,k

Wijkr
iρj cosk φ. (2)

For instance, W020,W040,W131 represent the amounts of defocus, spherical aberration, and

coma, respectively. For spherical optical systems, the aberrations become independent of

W(  )

r
Lens

Image
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Pupil

Reference
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Aberrated
Wavefront

Fig. 4. The OPDW (ρ) of a lens is the path difference between an ideal spherical

wavefront and the aberrated wavefront propagating from the exit pupil of the

lens.
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position on the sensor due to the symmetry of the system. In this case, the OPD becomes

W (ρ) =
∑

i,j,k

Wijkρ
j , (3)

in which case defocus and spherical aberration become the dominant aberrations. For a thin

lens, the spherical aberration coefficient W040 can be shown to be [26]

W040 =
σI

512

D

F/#3
, (4)

where D is again the diameter of the lens aperture, and σI is the structural coefficient (a

constant that depends only on index of refraction and is usually in the range σI = 5− 15).

4.B. The Aberration Induced PSF

When a lens exhibits aberrations, it can no longer produce a perfect focus. A perfectly fo-

cusing lens produces a Point Spread Function (PSF) that is a delta function, which produces

the sharpest focus possible. Diffraction and geometric aberrations cause the PSF to deviate

from this ideal shape. The OPD can be used to calculate the PSF produced by an optical

system with aberrations. If the aberrations are relatively small, then the effect of diffraction

r
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(a) A singlet with aberrations

r
-
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r 3.=
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(b) The rayfan and PSF of (a)

Fig. 5. (a) A singlet lens with strong spherical aberrations. (b) The rayfan

shows ray position on the sensor plane as a function of position in the lens

aperture. The PSF has a strong peak because rays are concentrated around

the center of the image plane. The PSF is support is enclosed in an area of

radius α.
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needs to be considered and Fourier Optics must be used to derive the correct PSF shape.

If the aberrations are large, however, the PSF can be derived using geometric optics. Since

rays propagate perpendicular to the aberrated wavefront, we can use the OPD to determine

where each ray pierces the sensor plane. The transverse ray-aberration curve r = T (ρ) gives

the position of a ray in the sensor coordinates r as a function of coordinates in the pupil

plane ρ. For a point source at infinity, this is given by [26]:

T (ρ) = 2F/#
dW

dρ
. (5)

For a lens with spherical aberrations, the transverse aberration curve is given by (see

Figure 5(b))

T (ρ) =
σI

64

D

F/#2
ρ3 (6)

= αρ3, (7)

where α is the spherical aberration coefficient (usually called SA3). Because ρ is given in

normalized coordinates, the full support of the PSF falls within a circle of radius α (see

Figure 5(b)). From Equation 7 it is clear that if we scale the lens uniformly by a factor of

M (such that the F/# remains constant), α increases by the same factor.

We can think of the ray-aberration curve as an integration curve in a radially symmetric

light field phase space [27] [28] [29]. That is, we can write the light field of a point source

propagating through an aberrated lens as

L(r, ρ) =
1

π
⊓ (ρ)

δ(r − T (ρ))

π|r| , (8)

where

⊓(ρ) =











1 if |ρ| < 1

0 otherwise

(9)

is the tophat function. The advantage of the light field representation is that the PSF can

be found by integrating over the aperture coordinates. We consider the general monomial

OPD W (ρ) = α/(n + 1)ρn+1 which leads to the ray-aberration curve T (ρ) = αρn. We note

that taking the modulus of the radial coordinate inside the ray aberration curve so that

T (ρ) = α|ρ|n does not alter the PSF. The Point Spread Function (PSF) of the lens can then

be written as (for a derivation see Appendix A)
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P (r) = π

∫

∞

−∞

L(r, ρ)|ρ|dρ (10)

=
1

πnα2/n
⊓
( r

α

)

|r|2/n−2. (11)

The PSF can be shown to be unit normalized so that the integral of the PSF over sensor

coordinates is equal to 1 (see Appendix B). The PSF for a lens with spherical aberrations is

then written as

P (r) =
3

2πα2/3
⊓
( r

α

)

|r|−4/3. (12)

5. Aberrations and Resolution Scaling Laws

5.A. The Classical Aberration Limit to Resolution

For a diffraction limited lens, the SBP increases quadratically with the scaling factor M .

However, the SBP of a lens also depends on the diameter of the blur circle caused by geometric

aberrations. We introduce the variable δg, which represents the geometric spot size at lens

scale M = 1, which we recall corresponds to a focal length of f = 1mm. Lohmann argues

that the combined blur area when diffraction and aberration are taken into account can be

expressed as the sum δ2d + δ2g . Since geometric blur increases linearly with the scaling factor

M , the SBP becomes [25]

Rgeom(M) =
M2∆x∆y

(λF/#)2 +M2δ2g
. (13)

In this case, the SBP plateaus at ∆x∆y/δ2g when the lens is no longer diffraction limited and

Mδg >> λF/# (see the green curve in Figure 3). For this reason, lens designers typically

seek to balance lens aberrations in an effort to minimize the blur circle. For example, defocus

can be introduced into a lens with spherical aberrations in order to reduce the geometric blur

circle. From a classical perspective, this strategy increases resolution because it decreases the

spot size of the lens. As we will show in Section 6 however, this strategy is not desirable

from a computational imaging perspective because it reduces the conditioning of the PSF,

introducing more deblurring error.

5.B. The Scaling Law for Conventional Lens Design

The geometric blur size can always be decreased by stopping down a lens. As a result lens

designers typically increase the F/# as a lens is scaled up. A general rule of thumb is that

the F/# is increased such that the focal length in mm is approximately equal to (F/#)3.

Many commercially available lenses follow this general trend (see Figure 6). For instance, the
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500mm focal length Schneider Apo-Symmar operates at F/8, and 83 ≈ 500. This heuristic

F/# scaling law has a special significance for lenses with spherical aberration. Then the

geometric blur size δg is proportional to the spherical aberration coefficient α, and from

Equation 7

α =
σI

64

D

F/#2
=

σI

64

f

F/#3
. (14)

Thus, if the F/# increases with the cube root of the focal length, the geometric blur

size δg becomes independent of the scaling factor M . However, the diffraction blur size now

increases as a function of scale so that δd = λM1/3. Then (see the blue curve in Figure 3)

the SBP becomes [25]

Rconv(M) =
M2∆x∆y

λ2M2/3 + δ2g
. (15)

Equation 15, derived by Lohmann, is a scaling law that tells us generally how SBP increases

with lens size for a conventional lens design. The equation says that when M is large, the

diffraction spot size dominates geometric blur. In this regime, the scaling follows the behavior:

Rconv(M) ∝ M4/3, (16)

Microscope
F/1 1mm FL

Wide Angle
F/3 27mm FL

SLR Lens
F/5 125mm FL

F/#

Lens Scale (M)

Telephoto
F/10 1000mm FL

Fig. 6. For conventional lens designs, the F/# typically scales with the cube

root of the focal length in millimeters.
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which overcomes the resolution threshold set by the aberration limit, but does not attain

the ideal M2 behavior of the diffraction limited scaling law.

6. Computational Imaging

Conventional optical systems are based on the centuries old tradition of modeling optical

systems as isomorphic mappings between scene radiance and pixel intensity. In a conventional

camera, it is assumed that the brightness measured at a single pixel corresponds directly to

the radiance of a single scene point. In the computational imaging paradigm, we consider the

optical system as a channel that linearly encodes an image according to the image formation

equation

y = Ax+ ν, (17)

where y ∈ RM is a vector consisting of a lexicographic re-ordering of the M measured pixel

intensities, A is an MxN matrix, x ∈ RN is a vector of N unknown discreet scene radiance

values, and ν ∈ RM is a vector representing the noise measured at each pixel, typically

assumed to be gaussian so that ν ∼ N (0, σ2
nI). The vector of unknown radiance values x is

a discretization of the continuous radiance distribution representing a latent focused image,

and in most cases the system is fully determined so that M = N . The most important

distinction between conventional imaging and computational imaging is that the former

maps each unknown radiance value to a single pixel measurement, while the latter maps a

linear combination of unknowns to each pixel measurement.

In the analysis that follows, we assume the optical system is shift invariant, in which case

the observation can be modeled as a convolution between the lens PSF and the unknown

scene radiance. Convolution can be expressed compactly in the Fourier domain as the product

between the Fourier transform of the PSF, referred to as the Optical Transfer Function

(OTF), and the Fourier transform of the scene radiance. In our discreet framework, we

denote the PSF by the vector p and the OTF by the vector p̂ = Fp, where F is the Fourier

matrix. The matrix A becomes a cyclic matrix such that Ai,j−i = pi with the special property

that it can be written as A = FΛF, where Λ is a diagonal matrix and Λii = p̂i. Then the

image formation equation can be written as a sparse set of linear equations in the Fourier

domain:

ŷ = Λx̂+ ν̂, (18)

where the ˆ operator denotes multiplication with the Fourier matrix F.
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6.A. Image Deblurring

In the conventional imaging paradigm, pixel measurements correspond directly to scene

radiance values. In the computational imaging paradigm, the unknown image x is blurred

by the matrix A. To deblur the captured image y we must invert Equation 17. If the PSF

is well conditioned, then the OTF contains no zero crossings and the matrix A is full rank

and invertible, and we can estimate the unknown radiance x∗ as

x̂∗ = Λ−1ŷ. (19)

Equation 19 is a sparse set of linear equations such that the estimate x∗ is found simply by

taking the ratio of Fourier coefficients

x̂∗

i = ŷi/p̂i. (20)

The final estimate can then be found by simply taking an inverse Fourier Transform. Unfor-

tunately, we cannot recover the unknown image exactly because the original measurements

were corrupted by noise. In order to quantify the quality of the deblurred image, we use the

mean squared deblurring error σ2
d as a metric, which is defined as the expected mean squared

difference between the deblurred image x∗ and the ground truth image x. σ2
d measures the

variance of noise artifacts induced by the deblurring process. In our shift invariant system,

this can be written as

σ2
d =

1

N
E[‖x∗ − x‖2] (21)

=
σ2
n

N

N
∑

i=1

1

‖p̂i‖2
, (22)

where E denotes taking the expectation with respect to the noise ν. Equation 22 says that,

when naive deblurring is applied, the deblurring error is a product between the noise variance

and the average squared reciprocal of the OTF.

6.B. Spherical Aberrations and Deblurring

In Section 4.B showed that the spherical aberration coefficient α scales linearly with lens

size, and we derived the analytic expression for the PSF of a lens with spherical aberrations,

given by Equation 12. From this expression, we can derive the OTF of the lens. For a

radially symmetric PSF p(r), the OTF p̂(q) can be found by applying the zero order Hankel

transform:

p̂(q) = 2π

∫

∞

0

J0(qr)p(r)rdr, (23)
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where J0(r) is the Bessel function of the first kind. For the PSF given by Equation 12, the

OTF becomes

p̂(q) =
2

α2/3

∫ α

0

J0(qr)r
−1/3dr (24)

= 1F2({
1

3
}, {1, 4

3
},−α2q2

4
), (25)

where 1F2(a; b, c; d) is the Generalized Hypergeometric Function [30]. Figure 7 shows a com-

parison between the OTF calculated analytically using Equation 24 and the OTF calculated

numerically using the Geometric MTF feature in Zemax Optical Design Software [31]. The

OTF is calculated at a variety of lens scales corresponding to spherical aberration coefficients

α = {5µm, 13µm, 100µm}, and the results are highly consistent in all cases.

With an equation for the OTF, it is possible to derive an analytic expression for the

deblurring error. In the continuous domain, the deblurring error from Equation 22 becomes

σ2
d =

2σ2
n

Ω2

∫

Ω

0

1

‖p̂‖2(q)qdq, (26)

where the signal is assumed to be bandlimited by the nyquist frequency Ω. Unfortunately,

0 50 100

1
OTF Comparison

Zemax

Analytic

= 5um

= 13um

= 100um

Spatial Frequency (mm  )-1

O
T

F

Fig. 7. A comparison of the OTF for a lens with spherical aberration calculated

using Zemax (the blue curves) and using our analytic formula (red curves). The

OTF is calculated at various lens scales corresponding to spherical aberration

coefficients of α = {5µm, 13µm, 100µm}
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there is no closed form solution for the expression in Equation 26 after substituting the

Hypergeometric function, so we instead approximate the OTF using the following equation:

p̂(q) =
2

α2/3

∫

∞

0

J0(qr)r
−1/3dr (27)

=
2 Γ(7/6)√

πα2/3
, (28)

where Γ is the gamma function. Equation 27 essentially approximates the PSF as having

infinite support, which is accurate for large amounts of spherical aberration, but decreases

in accuracy as the spherical aberration approaches zero. Figure 8 shows a comparison of the

OTF calculated using using our analytic formula (red curves) and using the approximation

for the OTF given by Equation 27. The OTF is calculated at various lens scales corresponding

to spherical aberration coefficients of α = {20µm, 50µm, 200µm}. As the amount of spherical

aberrations increase, the approximation increases in accuracy.

Substituting the approximate MTF from Equation 27 into the expression in Equation 26

gives us an analytic expression for the deblurring error:

σd = σn

√

3π

2

(Ωα)2/3

2 Γ(7/6)
. (29)

0 100

1

0 100

1

0 100

1

= 20um = 50um = 200um

Spatial Frequency (mm  )-1

O
T

F

Approximate

Analytic

Fig. 8. A comparison of the OTF for a lens with spherical aberration cal-

culated using using our analytic formula (red curves) and using the ap-

proximation for the OTF given by Equation 27. The OTF is calculated

at various lens scales corresponding to spherical aberration coefficients of

α = {20µm, 50µm, 200µm}. As the amount of spherical aberrations increase,

the approximation increases in accuracy.
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Fig. 9. A comparison of the RMS deblurring error σd as a function of the

spherical aberrations coefficient (α) with sensor noise σn = .01 and nyquist

frequency Ω = 100mm−1. The red curve shows the error computed numerically

using Equations 24 and 26. The green curve is calculated using the closed form

expression for deblurring error given in Equation 29. The green curve closely

approximates the green curve, with accuracy increasing as α increases.

Since we know from Equation 7 that scaling a lens by a factor of M also scales α by the

same factor, Equation 29 gives us the relation

σd = kσnM
2/3 (30)

where k is a constant. Equation 30 expresses a remarkable fact: for lenses with spherical

aberrations, while the size of the PSF increases linearly with lens scale M , the deblurring

error increases sub-linearly. While Equation 30 is based on an approximation of the geometric

OTF, it closely approximates the deblurring error calculated numerically using the OTF from

Equation 24 (see Figure 9).

7. A Scaling Law for Computational Imaging

7.A. Deblurring Error vs. Resolution

For the scaling laws given in Section 5, it is assumed that the minimum resolvable spot size is

equal to the blur size due to geometric aberrations, δg. For a computational imaging system
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(i.e., with deblurring), the resolution is given by the pixel size ξ, and SBP does not depend

directly on the geometric blur radius δg. A more pertinent quantity for measuring image

quality is SNR. In the absence of any noise we can theoretically increase SBP by decreasing

pixel size until we have reached the diffraction limit. In order to provide a fair comparison

between any two computational imaging systems, we must fix the SNR.

By fixing SNR, we establish a relationship between the deblurring error and pixel size. To

show this, we express deblurring error as a function of lens scale M . Assuming the deblurring

error is proportional to sensor noise, we can write

σd = σnf(M), (31)

where f(M) represents the scale-dependent deblurring factors. In order to force the SNR to

remain constant across lens scale, we must adjust the sensor noise appropriately.

We now relate pixel size ξ to sensor noise σn. Here we assume that pixels receive sufficient

light such that poisson noise dominates. Then the measurement noise can be well approxi-

mated by additive gaussian noise with variance proportional to the mean signal intensity [32].

Scaling ξ by a factor of M increases the pixel’s area by a factor of M2. For a fully saturated

pixel, assuming a shot noise limited sensor, this will increase the sensor’s full well capacity

by M2 and decrease noise by a factor of 1/M relative to the signal. The sensor noise is then

inversely proportional to pixel size so that

ξ(M) ∝ 1

σn(M)
∝ 1

f(M)
. (32)

Equation 32 says that in order to make SNR scale independent, the pixel size should be

increased as a function of M to exactly cancel out scale-dependent deblurring factors. The

number of resolvable points for a computational imaging systems is then

Rcomp(M) =
M2∆x∆y

(λF/#)2 + ξ(M)2
. (33)

7.B. An Analytic Scaling Law

Using the expression for deblurring error for a lens with spherical aberrations given by

Equation 30, we see that in order to produce a SNR that is independent of lens scale, the

pixel size should be scaled according to the relation ξ ∝ M2/3. Plugging this into Equation

33 gives an analytic scaling law for computational imaging systems:

Rana(M) =
M2∆x∆y

(λF/#)2 + k2
2M

4/3
(34)
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where we have gathered proportionality constants in to k2. For large M , the scaling law has

the behavior

Rana(M) ∝ M2/3. (35)

As with conventional lens design curve Rconv, Equation 34 gives a scaling law that breaks

the resolution threshold imposed by the aberrations limit (see the magenta curve in Figure

11). However, the analytic scaling law does not behave as close to the ideal diffraction limited

scaling law as the Rconv curve. At the same time, the Rconv curve assumes that F/# reduces

and more light is sacrificed as scale increases, while the Rana curve does not make this

assumption.

7.C. Image Priors for Improved Performance

In the previous section we showed analytically that, when a computational approach is taken,

the resolution of a lens with spherical aberrations breaks the classical limit that results when

considering geometrical spot size alone. The Rana curve given in Equation 34, however, does

not increase as rapidly with lens scale as does Lohmann’s scaling law for conventional lens

designs. We now show that the scaling behavior of computational imaging systems surpasses

that of conventional lens designs when image priors are taken into account.

In Section 6.A we used Equation 19 to form an estimate of our unknown image. This

solution can be seen to be equivalent to the solution found by maximizing the likelihood for

the probability distribution [33]

P (ŷ|x̂) = exp ‖ŷ− Λx̂‖2. (36)

The maximum likelihood solution minimizes the probability of error in the estimate when no

information about the the prior distribution P (x̂) is available a priori. In our case however,

some information about P (x̂) is known ahead of time since the unknown quantity x̂ belongs

to the class of natural images. To make a solution to the estimation problem analytically

tractable, we assume a linear distribution on Fourier coefficients of natural images taking

the form P (x̂) = exp ‖Bx̂‖2, where B is a diagonal matrix. We define the vector of Fourier

coefficients b̂ such that Bii = b̂i. Given a prior distribution, the maximum a posteriori

solution minimizes the probability of error in the estimate. The estimate then becomes

18



x̂∗ = argmax
x

P (ŷ|x̂)P (x̂) (37)

= argmax
x

(‖ŷ− Λx̂‖2 + ‖Bx̂‖2) (38)

= (Λ2 +B2)−1Λtŷ, (39)

which can be written as the set of linear equations

x̂∗

i =
¯̂pi

‖p̂i‖2 + ‖b̂i‖2
ŷi, (40)

where the ¯ operator denotes complex conjugate. We define the average power spectrum â

such that âi = E[‖x̂i‖2], where the expectation is taken with respect to the set of natural

images. Then, as Zhou and Nayar showed, the optimal vector b̂ is such that b̂i = σ2
n/âi, and

the squared deblurring error becomes [34]

σ2
d = σ2

n

N
∑

i=1

1

‖p̂i‖2 + σ2
n/âi

. (41)

Figure 10 shows the deblurring error σd calculated using Equations 24 and 41. σd is shown

as a function of spherical aberration α for a variety of sensor noise levels in the range

σn = [.002, .1]. A polynomial is fit to each curve, and the best fit is found to be in the range

σd ∝ α1/3.4 to σd ∝ α1/4.2. We approximate the deblurring error as

σd ∝ σnα
1/3.8. (42)

∝ σnM
1/3.8. (43)

In fact, this estimate is slightly pessimistic, as the deblurring error also increases sub-linearly

with σn as well as α. From Equations 43 and 33, we conclude that when image priors are

used for deblurring, the resolution of a computational imaging system obeys the scaling law

given by (see the cyan curve in Figure 11)

Rprior(M) =
M2∆x∆y

(λF/#)2 + k2
3M

2/3.8
, (44)

where again we have gathered proportionality constants into k3. While the analytic scaling

law curve Rana does not scale as quickly as the conventional lens design curve Rconv, the
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Fig. 10. RMS deblurring error as a function of spherical aberration (α). As α

increases, both the PSF size and the deblurring error increase. While the size

of the PSF increases linearly with α, deblurring error increases with α1/3.8. In

this experiment, the nyquist frequency Ω = 250mm−1.

curve Rprior scales more quickly. From this we conclude that in building a camera at a

desired resolution, when image priors are taken into account, a computational camera can

be built at a smaller scale than a conventional lens design. Again, the Rconv curve assumes

that F/# reduces and more light is sacrificed as scale increases, while the Rprior curve does

not make this assumption.

8. Gigapixel Computational Cameras

According to Equation 44, a computational imaging approach can enable a greater resolution

to be achieved with a smaller camera size. To demonstrate this principle, we show results

from a proof of concept camera that utilize a very simple optical element. By using a large

ball lens, an array of planar sensors, and deconvolution as a post processing step, we are able

to capture gigapixel images with a very compact camera.

The key to our architecture lies in the size of the sensors relative to the ball lens. Together,

a ball lens and spherical image plane produce a camera with perfect radial symmetry. We

approximate a spherical image plane with a tessellated regular polyhedron, such as an icosa-

hedron. A planar sensor is placed on each surface of the polyhedron. Note that because

sensors are typically rectangular, a different polyhedron, such as a truncated icosahedron,

may provide more optimal sensor packing. Relatively small sensors are used so that each

sensor occupies a small FOV and the image plane closely approximates the spherical surface.
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Fig. 11. Scaling laws for computational imaging systems with spherical aberra-

tions. The Rana, which was analytically derived, shows an improvement upon

the aberration limited curve Rgeom, without requiring F/# to increase with

M . Performance is further improved when natural image priors are taken into

account, as the Rprior curve shows. The Rprior curve improves upon the con-

ventional lens design curve Rconv, also without requiring F/# to increase with

M .

As a result, our camera produces a PSF that is not completely spatially invariant, but comes

within a close approximation.

8.A. A Proof-of-Concept Gigapixel Camera

The first system we demonstrate consists solely of a ball lens and an array of planar sensors.

We use a 100mm acrylic ball lens and a 5 megapixel 1/2.5” Lu575 sensor from Lumenera

[35] (see Figure 12(a)). We emulate an image captured by multiple sensors by sequentially

scanning the image plane using a pan/tilt motor. With this camera, a 1 gigapixel image can

be generated over a roughly 60ox40o FOV by tiling 14x14 sensors onto a 75mmx50mm image

surface. When acquiring images with the pan/tilt unit, we allow a small overlap between

adjacent images.

The PSF as a function of field position on each individual sensor is shown in Figure 12(b).

Note that the PSF shape remains fairly consistent across the FOV of each sensor. The MTF

(shown in in Figure 12(c)) avoids zero crossings up to the Nyquist frequency of the sensor.

The plots were generated using Zemax Optical Design Software [31].

An implementation of this design is shown in Figure 13. Figures 2 , 14, and 16 show
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(a) An F/4 75mm focal length ball lens system.
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Fig. 12. (a) Our single element gigapixel camera, which consists solely of a

ball lens with an aperture stop surrounded by an array of planar sensors. (b)

Because each sensor occupies a small FOV, the PSF is nearly invariant to

field position on the sensor. (c) The PSF is easily invertible because the MTF

avoids zero crossings and preserves high frequencies.

two gigapixel images captured with this system. Note the remarkable level of detail captured

in each of the photographs. Zooming in to Figure 2 reveals the label of a resistor on a

PCB board, the stippling print pattern on a dollar bill, a miniature 2D barcode pattern,

and the extremely fine ridges of a fingerprint. Closeups in Figure 14 reveal fine details in a

watch, an eye, a resolution chart, and individual strands of hair. Closeups in Figure 16 reveal

details that are completely invisible in the zoomed out panorama, including a sailboat, a sign

22



Ball 
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Sensor

Pan/Tilt
Motor

Fig. 13. A system used to verify the performance of the design shown in Fig-

ure 12(a). An aperture is placed on the surface of the ball lens. A gigapixel

image is captured by sequentially translating a single 1/2.5”, 5 megapixel sen-

sor with a pan/tilt motor. A final implementation would require a large array

of sensors with no dead space in between them.

advertising apartments for sale, the Empire State Building, and cars and trucks driving on

a bridge

8.A.1. Color

Because our cameras do not include any color correcting elements, they suffer from axial

chromatic aberrations. For our 100mm diameter ball lens that we use, the chromatic focus

shift is about 1.5mm over the visible wavelength range. However, most of the image blur

caused by chromatic focus shift is in the chrominance channel of captured images [6] [7].

Since humans are less sensitive to blur in chrominance channels, axial chromatic aberrations

do not cause a significant degradation in perceived image quality. We use the deblurring

technique from Cossairt and Nayar [7], which is inexact but produces images that look good.

8.A.2. Post Processing

The post processing for captured images follows several steps. First, a transformation from

RGB to YUV color space is applied. Next, Wiener deconvolution is applied to the luminance

channel only, and the image is transformed back to RGB color space. A noise reduction

algorithm is then applied to suppress deblurring artifacts. We found the BM3D algorithm [36]

to produce the best results. Finally, the set of captured images are stitched to obtain a high
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Fig. 14. A 1.6 gigapixel image captured using the implementation shown

in Figure 13. The image dimensions are 65,000 x 25,000 pixels, and the scene

occupies a 104◦x40◦ FOV. From left to right, the insets reveal fine details in a

watch, an eye, a resolution chart, and individual strands of hair. Please visit

http://gigapan.org/gigapans/09d557515ee4cc1c8c2e33bf4f27485a/ to view

this example in more detail.

resolution image using the Microsoft Image Composite Editor [37].

8.B. A Single Element Design

The design in Figure 12(a) is extremely compact, but impractical because adjacent sensors

must be packed without any dead space in between them. The size of this system is limited

by the package size of the sensor relative to the active sensor area. Sensors with a package

size that is only 1.5x larger than the active sensor area are currently commercially available.

With these sensors, it is possible to build a gigapixel camera that uses only a single optical

element, as shown in Figure 15(a). In this design, each sensor is coupled with a smaller

acrylic relay lens that decreases the focal length of the larger acrylic ball lens. The relay
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lenses share a surface with the ball lens, which means that it is possible to combine the

entire optical system into a single element that may be manufactured by molding a single

material, drastically simplifying the complexity (and hence alignment) of the system.

8.C. Capturing the Complete Sphere

All the designs proposed in this paper use a ball lens. A great advantage of using a ball lens

is that, because it has perfect radial symmetry, a near hemispherical FOV can be captured.

In fact, it can even be used to capture the complete sphere, as shown in Figure 15(b). This

design is similar to the one in Figure 15(a) with a large gap between adjacent lens/sensor

pairs. Light passes through the gaps on one hemisphere, forming an image on a sensor located

on the opposite hemisphere. As a result, the sensors cover the complete 2π FOV at the cost

of losing roughly half the incident light.

Sensor
Array

Ball
Lens

Lens
Array

(a) A single element design

Ball Lens

Lens Array

Sensor Array

200 m
m

100 m
m

(b) A 4π FOV design

Fig. 15. (a) A single element design for a gigapixel camera. Each sensor is

coupled with a lens that decreases focal distance, allowing FOV to overlap

between adjacent sensors. (b) A design for a gigapixel camera with a 2π radian

FOV. The design is similar to the implementation in Figure 15(a) with a large

gap between adjacent lens/sensor pairs. Light passes through the gaps on one

hemisphere, forming an image on a sensor located on the opposite hemisphere.
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Fig. 16. A 1.4 gigapixel image captured using the implementation

shown in Figure 13. The image dimensions are 110,000 x 22,000 pix-

els, and the scene occupies a 170◦x20◦ FOV. From left to right, in-

sets reveal a sailboat, a sign advertising apartments for sale, the Em-

pire State Building, and cars and trucks driving on a bridge. Please visit

http://gigapan.org/gigapans/7173ad0acace87100a3ca728d40a3772/ to view

this example in more detail.

9. Discussion

9.A. Limitations of Scaling Laws

In this paper, scaling laws were derived which express the the general scaling behavior of res-

olution versus lens scale M , with special attention paid to how the behavior for increasingly

large values of M . However, because we have chosen to speak in general terms about the

scaling behavior, we have not given attention to how resolution behaves for smaller values

of M , which may result in different behavior. For instance, when M is large, conventional

lens designs outperform computational imaging without priors, as indicated by the Rconv and

Rana curves. However, for small M , Rana may actually be greater than Rconv, depending on

the exact values of the proportionality constant k1 and the amount of spherical aberration

δg. These exact values will vary depending on the specific lens design and sensor characteris-

tics, but the aggregate behavior for large values of M will will remain consistent accross all

scenarios. In this way, the scaling laws encompass the gross behavior of lenses and sensors,

but do not always lend themselves to a direct comparison between specific designs.
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9.B. On Computational Imaging and Scaling Laws

The original scaling laws derived by Lohmann are pleasingly simple in the sense that they

keep the problem domain constrained to a single variable: the scale parameter M . In some

sense, introducing computational imaging made the problem more complicated because it

introduced a new variable in the form of SNR. Looking at the problem in a general way, the

resolution scaling behavior of different imaging systems can vary both as a function of lens

scale and SNR.While Lohmann made no mention of SNR in his original analysis, there was an

implicit relationship between SNR and resolution that was unstated. For example, consider

the expression for the scaling behavior of lenses in the presence of geometric aberrations given

by Equation 13. We recall that, for large M , resolution plateaus at ∆x∆y/δg. However, if

we choose to match pixel area to blur area, then pixel size increases linearly with M . Thus,

according to the arguments in Section 7, if we continue to scale a lens beyond the aberration

limit, resolution does not increase, while SNR increases linearly with M . On the other hand,

for diffraction limited lenses, pixel size, and thus SNR, remains constant while resolution

scales quadratically with lens scale. This leads to an interesting observation about the tradeoff

between resolution and SNR. In some sense, these two examples are opposite extremes in a

two-dimensional design space. When geometric aberrations are present, resolution becomes

fixed but SNR can increase, while for diffraction limited lenses, SNR becomes fixed but

resolution can increase.

This brings us to the scaling laws for conventional lens design and computational imaging.

The conventional lens design curve, Rconv, is derived assuming that both F/# and pixel size

increase with M1/3. In the photon limited noise regime, SNR is proportional to pixel size

ξ, and inversely proportional to F/#. Thus, while the Rconv curve is derived assuming that

more light is sacrificed as lens scale increases, the amount of photons collected per pixel

remains fixed, and thus so does SNR. Similarly, in the computational imaging regime, we

ask what pixel scaling behavior will produce a deblurring error, and hence SNR, that is

independent of lens scale.

The scaling laws for computational imaging and conventional lens design represent the

behavior of two competing techniques that are trying to achieve the same goal: maximizing

resolution scaling behavior while fixing SNR. Neither technique achieves the ideal scaling

performance of diffraction limited lenses. In effect, both techniques are complexity reducing

measures, since they aim to maximize performance without introducing the added optical

elements required to reduce aberrations below the diffraction limit. This brings us to a

third axis in our design space: lens complexity. As we scale a diffraction limited lens, SNR

remains fixed and resolution reaches the maximum scaling potential, however lens complexity

must also increase in an effort to combat greater amounts of geometrical aberrations. In

contrast, for the computational imaging and conventional lens scaling laws, both SNR and
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Fig. 17. The MTF for spherical optical systems with varying amounts of com-

plexity. Complexity is measured as the number of optical surfaces, which in-

creases from left to right as 1 to 6 surfaces. The six surface design is the Gi-

gagon lens designed by Marks and Brady [21]. Each design is a F/2.8 280mm

FL lens optimized using Zemax. As the number of surfaces increases, the MTF

improves, improving the SNR as well.

lens complexity remain fixed, but the maximum scaling potential is not achieved.

In an ideal setting, we would like to maximize resolution and SNR while minimizing

lens scale and complexity. This cannot be achieved in practice, however, and the best that

can be done is to develop a merit function that weighs these measures in terms of their

relative importance on an application dependent basis. Lens optimization based on this

merit function then gives the design which results in the best performance for this specific

application.

9.C. The Performance vs. Complexity Trade-off

According to Equation 44, with the aid of computations, the resolution of a lens with spher-

ical aberrations will, in general, scale more quickly than for a conventional lens design.

However, a lens which requires deblurring will have a smaller SNR than a diffraction limited

lens of the same scale. For the designs proposed in Section 8, we have chosen designs that

favor simplicity, and as a consequence, also result in a lower SNR. Any computational imag-

ing system poses an inherent trade-off between complexity and SNR. In practice, exploring

this trade-off requires a carefully designed measure for complexity.

A good complexity measure must take into account many different factors: the number of
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surfaces, the degree polynomial of each surface, etc. While it is difficult to develop a general

measure for complexity that applies to all lens designs, the problem becomes much simpler

when we consider only concentric spherical optical elements. In this case, complexity can

simply be quantified as the number of surfaces used in the design.

To explore the tradeoff between complexity and SNR for the special case of spherical optics,

we created six spherical optics designs, ranging in complexity from 1 shell to 6 shells. The six

designs were created in an effort to analyze how the best case performance of a computational

imaging system scales as a function of lens complexity. Shells 1-5 were optimized with Zemax

using a custom optimization procedure that minimizes the deblurring error. The six shell

design shown is the Gigagon lens designed by Marks and Brady [21]. The six designs and

their relative performance are shown in Figure 17. From the MTF plots shown at the bottom

of the figure, it can be seen that the six shell design performs near diffraction limited, and

the MTF steadily decreases with decreasing complexity.

Figure 18 shows how, rather than favoring simplicity, an optimal design may consist of more
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Fig. 18. SNR vs. complexity for the lens designs shown in Figure 18, assuming

a computational approach is taken. SNR increases by a factor of 19 when

complexity increases from 1 shell to 2 shells, while SNR only increases by a

factor of 4 when complexity increases from 2 shells to 6 shells.
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elements than the designs discussed previously in this paper. It appears that, for the special

case of spherical optics, there is a law of diminishing returns when it comes to improving

performance by means of increasing complexity. In particular, we note that SNR increases

by a factor of 19 when complexity increases from 1 shell to 2 shells, while SNR only increases

by a factor of 4 when complexity increases from 2 shells to 6 shells. Taking this behavior

in to account, an optimal design may be found by balancing lens scale and complexity.

Such a design would have minimum scale and complexity for a given resolution, and a fixed

scale/complexity ratio. Whether or not general lens designs also have similar complexity vs.

performance behavior is an open question that is currently under investigation.

10. Conclusion

We have given a comprehensive analysis on the resolution scaling behavior of cameras with

respect to lens size. Lohmann’s original results have been extended to include the resolution

scaling behavior of computational imaging systems, with special attention paid to lenses that

exhibit spherical aberrations. Closed form expressions for the PSF, OTF, and deblurring

error of lenses which exhibit spherical aberrations have been derived. In addition, we have

shown that, when image priors are taken into consideration, computational imaging systems

exhibit superior scaling performance with respect to conventional lens designs. The result

gives credence to the further development of computational imaging techniques developed

for the purpose of reducing lens complexity.

In support of our analysis on resolution scaling behavior, we have explored the design of

gigapixel computational imaging systems based on spherical optical elements, which primar-

ily exhibit spherical aberrations. We demonstrated a proof-of-concept system that emulates

a spherical lens surrounded by an array of planar sensors tessellated onto a spherical surface.

Several examples were shown which demonstrate promising image quality with a compact

camera that exhibits low lens complexity. Finally, the trade-off between performance and lens

complexity is explored, providing a complete exploration of the design space of resolution,

SNR, lens scale and complexity for the special case of spherical optics.

11. Appendix A: PSF Derivation

From Equations 8 and 11, the PSF produced by a lens with a monomial OPD is given by

P (r) =

∫

∞

−∞

⊓(ρ)δ(r − αρn)

π|r| |ρ|dρ (45)

(46)

We introduce a change of variables z = αρn, giving the relations
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ρ =

( |z|
α

)1/n

(47)

dρ =
1

nα

( |z|
α

)1/n−1

dz. (48)

After substitution, the PSF becomes

P (r) =
1

π|r|

∫

∞

−∞

⊓
( z

α

)

δ(r − z)
1

nα

( |z|
α

)1/n ( |z|
α

)1/n−1

dz (49)

=
1

π|r|nα

∫

∞

−∞

⊓
( z

α

)

δ(r − z)

( |z|
α

)2/n−1

dz (50)

=
1

π|r|nα ⊓
( r

α

)

( |r|
α

)2/n−1

(51)

=
1

πnα2/n
⊓
( r

α

)

|r|2/n−2. (52)

12. Appendix B: PSF Normalization

The energy for the PSF given in Equation 11 is

e = π

∫

∞

−∞

Pr(r)|r|dr (53)

= π

∫

∞

−∞

1

πnα2/n
⊓
( r

α

)

|r|2/n−2|r|dr (54)

=
1

nα2/n

∫ α

−α

|r|2/n−1dr (55)

=
1

nα2/n

[

n

2

r

|r| |r|
2/n

]

−α

α

(56)

=
1

nα2/n

(

nα2/n
)

= 1. (57)

which verifies that the PSF is properly normalized,
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