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ABSTRACT

Tradeoffs and Limits in Computational Imaging

Oliver Cossairt

For centuries, cameras were designed to closely mimic the human visual system. With the

rapid increase in computer processing power over the last few decades, researchers in the

vision, graphics and optics community have begun to focus their attention on new types

of imaging systems that utilize computations as an integral part of the imaging process.

Computational cameras optically encode information that is later decoded using signal pro-

cessing. In this thesis, I show three new computational imaging designs that provide new

functionality over conventional cameras. Each design has been rigorously analyzed, built

and tested for performance. Each system has demonstrated an increase in functionality over

tradition camera designs. The first two computational imaging systems, Diffusion Coding

and Spectral Focal Sweep, provide a means to computationally extend the depth of field of

an imaging system without sacrificing optical efficiency. These techniques can be used to

preserve image detail when photographing scenes that span very large depth ranges. The fi-

nal example, Gigapixel Computational Imaging, uses a computational approach to overcome

limitations in spatial resolution that are caused by geometric aberrations in conventional

cameras.

While computational techniques can be used to increase optical efficiency, this comes at

a cost. The cost incurred is noise amplification caused by the decoding process. Thus, to

measure the real utility of a computational approach, we must weigh the benefit of increased

optical efficiency against the cost of amplified noise. A complete treatment must take into

account an accurate noise model. In some cases, the benefit may not outweigh the cost,

and thus a computational approach has no value. This thesis concludes with a discussion

on these scenarios.
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Chapter 1

Introduction

At a fundamental level, all computer vision research is centered around measuring the

visual world. We use image sensors to measure the brightness of scenes, and we use these

measurements to infer radiometric and geometric properties. As humans, we organize this

visual information to build on our understanding of the visual world, and a great deal of

computer vision research is focused on extending this capability to machines. In this thesis

we focus on the low-level mechanisms underlying the process of image formation, with the

goal of developing novel sensing techniques that will better assist in machine driven image

understanding. There are two main components of image formation: 1) The optical devices

that condition the light as it propagates from the scene towards the optical sensor. 2)

The optical sensor that converts the light energy into a measurable signal. Here, we focus

primarily on the geometric properties of light, so the means of conditioning are reflection,

refraction, transmission and absorption. We are now in the age of the digital camera, and

so we focus on the use of digital image sensors such as CMOS and CCD sensors. The choice

of optical conditioning and sensing can have a dramatic effect on the information that is

captured. A good choice of optical conditioning requires careful consideration about what

information content in the scene is most valuable. The digital sensor is a highly complex

electrical system, wrought with several sources of uncertainty that corrupt captured images

with noise and limit the performance of the imaging system. A thorough treatment of the

imaging process jointly considers the optical conditioning and digital sensing together.

For centuries, the human visual system has been a model for conventional cameras.
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Figure 1.1: Conventional cameras map 3D scene points onto a 2D sensor via perspective

projection, mimicking the human eye.
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Figure 1.2: Computational cameras include a decoding step as part of the imaging pipeline.

A conventional image is recovered offline via signal processing.
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Figure 1.3: In many computational imaging systems, multiple scene points are mapped to

the same pixel, which can increase optical efficiency.
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Conventional cameras use perspective projection to form a two-dimensional irradiance pat-

tern from the inherently three-dimensional distribution of light intensity (see Figure 1.1).

Conventional cameras have the advantage that they produce images that can be directly

interpreted by humans because, in many cases, they mimic the images produced by our own

eyes.

The core idea of a computational imaging system is to utilize a clever combination of

optics and sensors to optically encode scene information (see Figure 1.2). What is actually

captured by the sensor may not be anything like the images that we are used to seeing. In

many cases, there is a conventional image embedded within the captured image that can

be recovered computationally. Part of the imaging pipeline is a step where the captured

image is decoded offline via signal processing. Computational imaging systems may employ

a many-to-one mapping between scene and pixel coordinates (see Figure 1.3), a phenomena

known as image blur. These systems can increase optical efficiency because the sampling

basis has a much larger support, and much more energy is captured per pixel. This type of

computational imaging system is studied extensively in this thesis.

There are two main reasons why we use computational imaging systems. The first is that

they offer increased functionality relative to a conventional imaging system. The increase in

functionality translates to the ability to capture new types of visual information. There is a

whole plethora of functions that computational cameras enable which are not accessible via

conventional cameras – including depth estimation, digital refocusing, digital perspective

adjustment, multispectral capture, motion blur removal, and defocus blur removal. How-

ever, new functionality is not the only reason we use computational cameras. The second

reason is that they can offer a performance advantage relative to a conventional imaging

system, which translates directly into greater fidelity in measurement and robustness to

noise. When computational cameras increase optical efficiency, they increase the strength

of captured signals, and often times this can lead to an increase in performance.

In this thesis we look at the design and implementation of a number of different compu-

tational imaging systems. We start by looking at the problem of defocus blur. Defocus blur

is depth-dependent blur that removes important scene details. For conventional cameras,

the only way to remove defocus blur is to stop down the lens aperture. In Chapter 2, we
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introduce the Diffusion Coding technique for computationally extending Depth Of Field

(DOF). This technique can recover details that would otherwise be lost due to defocus blur,

without stopping down the aperture. This is done by placing a custom optical diffuser in the

aperture of the lens that codes the blur in a manner that is invertible via post-processing.

In Chapter 3 we approach the problem of removing defocus blur from a different angle.

We introduce the spectral focal sweep technique, which takes advantage of chromatic aber-

rations in the camera lens to computationally extend DOF. The lens used in a spectral focal

sweep camera is actually simpler than for a conventional camera, and it is this simplicity

that we take advantage of to code defocus blur. The chromatic aberrations serve the same

purpose as the diffuser in diffusion coding: to code the defocus blur in a way that can be

inverted via post-processing.

In Chapter 4 we switch over from talking about defocus blur to talking about the blur

caused by geometric aberrations in lenses with imperfect focus. We introduce a gigapixel

computational camera that takes advantage of geometric aberrations to create a very high

resolution camera with a very compact form factor, and very simple optics. As in diffusion

coding and spectral focal sweep, the geometric aberrations code the image blur in a way

that is invertible, however, this time the purpose of the coding is to simplify the optical

system instead of extending DOF.

To understand how these imaging systems operate and what benefits they afford, let us

go back and formalize the notion of a computational camera. For this, we first describe the

plenoptic function, a fundamental concept in imaging.

1.1 Plenoptic Function

Digital cameras map visual information to digital numbers that can be processed by comput-

ers. But exactly what visual information is measurable? Adelson coined the term “Plenoptic

Function” to encompass the set of all measurable visual information [Adelson and Bergen,

1991]. The plenoptic function is a complete description according to the geometric optics

model of light. One parameterization of the plenoptic function is
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P (x, y, λ, t, u, v, z), (1.1)

where (x, y) are 2D spatial coordinates on the sensor, λ is the wavelength of light, t

is time, and (u, v, z) are 3-D spatial coordinates of the aperture of the optical system.

Together, these variables are the plenoptic coordinates. We usually refer to the 2D aperture

coordinates (u, v) as angular coordinates because they determine the angle that rays are

incident on the detector surface.

The plenoptic function essentially measures the radiance per unit wavelength at every

3-D spatial location. With the full plenoptic function, you would be able to watch a multi-

spectral movie showing any scene from any location on earth at any point in time. However,

we do not measure the plenoptic function directly. Our optical sensors measure optical

energy converted to a voltage differential. Sensors average away information because they

integrate over space, time, angle, and wavelength.

We measure the plenoptic function indirectly through a plenoptic sampling basis [Ihrke et

al., 2010]. Formally, the sampling basis are a set ofM sampling functions si(x, y, λ, t, u, v, z).

Defining the vector valued plenoptic coordinate p = (x, y, λ, t, u, v, z), the ith plenoptic

sample gi is then given by the inner product

gi = 〈P (p) , si(p)〉 (1.2)

=

∫

Ωp

P (p)si(p)dp, (1.3)

where Ωp is the entire plenoptic domain. Typically the plenoptic basis is orthogonal so that

〈si(p) , sj(p)〉 = δij , where δij is the Kronecker delta function. Due to physical constraints,

the sampling functions have finite support in each of the plenoptic coordinates, and, in

many cases, the sampling bases are separable. Take, for example, a camera system located

at depth z0 with aperture size (∆u,∆v), with a 1D sensor that has a pixel size and spacing

(∆x,∆y), collecting light uniformly over the wavelength range ∆λ, with an exposure time

of ∆t. The sampling basis for this camera is
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si(p) = δ(z0) ⊓
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where ⊓(x) is the box function,

⊓ (x) =



















1 if |x| < 1
2

0 otherwise

(1.5)

The pixel measurements yi are eventually converted to a digital number with a limited

dynamic range. There is a fixed number of bits/second that come out of a sensor that

limit the total measurement bandwidth, which essentially limits the information capacity

of the imaging system. Capturing the plenoptic function directly would require an enor-

mous amount of computational resources. We therefore typically capture only slices of the

plenoptic function, and we have different names for different slices. We call a 2D spatial

slice (x, y) an image, a 3D spatio-temporal slice (x, y, t) video, a 3D spatio-spectral slice

(x, y, λ) a multispectral volume, a 4D spatio-angular slice (x, y, u, v) a light field, and so on.

The plenoptic function is a useful theoretical tool because it encompasses the space of

measurable visual information. We do not discuss it in this thesis, but the concept can

be extended to include measurable properties of optical waves (e.g. the mutual coherence

function [Brady, 2009]), all possible lighting conditions (e.g. light transport [Kajiya, 1986]),

and so on. We do mention, however, that there is a large class of robust methods for

estimating geometric and material properties that cannot be analyzed directly using the

plenoptic function because they either depend explicitly on lighting conditions or wave

properties of light. Examples of these techniques include structured light [Nayar et al.,

2006b] [Gupta et al., 2009], BRDF estimation [Sun et al., 2007][Matusik et al., 2003], and

optical coherence tomography [Brady, 2009].

1.2 What is Computational Imaging?

Conventional cameras are restricted to have a very specific type of sampling basis: the basis

must consist of regularly spaced orthogonal sampling functions. Formally, the sampling
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basis can be written as si = w(p− i∆x,y), where ∆x,y is the sample spacing in the x and y

coordinates, and w is the sample function. The key property is that this produces a one-to-

one, distance preserving map between spatial plenoptic coordinates and pixel coordinates.

This allows the spatial information in the plenoptic function to be interpreted directly from

pixel measurements once the scale and orientation of the camera are determined. In this

way, a conventional camera produces an image that is identical to what what would have

been seen by a human observer. Note that by this definition, conventional cameras can

only measure spatial information, and a computational camera is the only way to measure

spectral, temporal, or angular slices of the plenoptic function.

A computational camera can have much more general sampling basis. In fact, one of

the core elements in designing a computational camera is the choice of sampling basis.

From the computational imaging perspective, the optics and sensor form a channel that

transmits visual information from the scene to the measurement made by an individual

pixel. The choice of optics and sensor then determines the sampling basis, which, in turn,

also determines the way that visual information is coded in the pixel measurements. From

this perspective, we may choose to take advantage of any redundancies in the signals that

will be transmitted by choosing our coding strategy appropriately. However, we do not have

unlimited flexibility in choosing our coding strategy because we are limited by the space of

realizable optical elements and devices. Beyond purely physical constraints, we are further

limited by taking into account the complexity, weight, size, and cost of manufacturing optical

elements. For instance, we can currently do a good job at creating arbitrary surface profiles

out of a single material, but it is quite difficult to arbitrarily control material properties (i.e.

index of refraction, absorption, etc.) within a 3D volume. In short, while the computational

imaging perspective brings new light to the use of unconventional optics, we are currently

restricted to considering the use of optical elements that do not differ too drastically from

those that can be realized using current technology.

Computational cameras are allowed to have much more flexible mappings between spa-

tial plenoptic and pixel coordinates. For instance, cameras with radial distortion are simple

types of computational cameras – geometric distortions code captured images in a way that

is recovered by resampling the image in post-processing. Computational cameras can also
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capture different slices of the plenoptic function. Another simple type of computational

camera is a camera with a Bayer filter. A Bayer filter spatially multiplexes color informa-

tion onto a single 2D sensor by applying a mapping that reorders plenoptic samples from a

3D wavelength-space volume to 2D spatial locations on a sensor. Recovering the 3D samples

is merely a matter of permuting the captured data.

An important point to make is that the plenoptic function is a purely radiometric quan-

tity, and is completely agnostic to the geometric properties of the world. Information about

spatial relationships is embedded within different radiometric features such as texture and

color. The plenoptic function does not contain any explicit information about 3D spatial re-

lationships. All cameras projectively map 3D scene coordinates to two or fewer dimensions.

Projective geometry causes information about the distance of objects from the camera to

be lost. As a result, spatial relationships in a conventional image can only be measured

accurately in two or fewer dimensions. Three dimensional spatial relationships can only be

recovered from the plenoptic function computationally by using triangulation techniques

that inherently take advantage of both angular and spatial plenoptic coordinates. For in-

stance, stereo and depth-from-defocus (DFD) methods densely sample angular coordinates

together with two or more spatial samples (i.e. translating or changing the size of the lens

aperture).

1.2.1 Signal Models and Image Formation

We come back to a discussion about what information content in the scene is most valuable.

Formally, we can define a representation basis for the class of input signals that we will be

imaging. The representation basis is defined by a set of N representation functions rj(p),

each of which is a different slice of the plenoptic function. An input signal f(p) can be

represented by a discrete set of N coefficients in this basis:

f(p) =

N
∑

j

fjrj(p). (1.6)

We often refer to the N representation coefficients fj collectively as the signal f , since f(p)

can be recovered directly from these coefficients using Equation 1.6, and we note that N



CHAPTER 1. INTRODUCTION 9

may be countable or infinite. Note Equation 1.6 allows us to write the image formation

equation as a linear equation relating the vector of N signal coefficients f to the vector of

M samples g

g = Hf , (1.7)

Hij =

∫

Ωp

rj(p)si(p)dp. (1.8)

H is the system transfer matrix, and its conditioning tells us how well we can estimate the

unknown signal when using a given sampling method. The uncertainty in the estimation is

determined by the assumptions we make about the signal and the algorithm used to invert

Equation 1.7.

As an example, consider the representation basis for the set of band-limited signals.

Band-limited signals can be represented using a sinc basis rj(p) = sinc(p − j∆p), where

∆p is the sample spacing. When the delta sampling basis si(p) = δ(p − i∆p) is used, the

sampling and representation basis are orthogonal and 〈si(p) , rj(p)〉 = δij . Then H is the

identity matrix, and Equation 1.7 does not need to be inverted. This is just another way

of stating the Nyquist theorem: band-limited signals can be recovered directly from delta

sampled measurements.

The representation basis may make more general assumptions about the set of input

signals. Whenever possible, we will choose the sampling basis so that it is orthogonal to the

representation basis. For instance, we can choose the sampling basis to be the same as the

representation basis, which allows us to sample features directly. However, for conventional

cameras, we do not have much flexibility in choosing our sampling basis, so we are limited in

terms of what features we can measure directly. This is a clear advantage of computational

imaging techniques – it allows us to consider a more general representation basis, and choose

a sampling basis that is tailored for the capture of specific features.

In some cases, we may have prior information about the statistics of the unknown

signal f that can be used to reduce uncertainty in the measurement process. For instance,

the Fourier coefficients of images are known to decay following a 1/ω law when averaged

across a large set of natural images [Weiss and Freeman, 2007][Srivastava et al., 2003].
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When the Fourier coefficients of a measured signal deviate from this aggregate behavior,

we may choose to attribute it to uncertainty in the measurement process. We can modify

our estimation algorithm to take into account this prior knowledge and use it to achieve

an improved estimate for the unknown signal f . The danger in this approach is that the

observed deviation may have been the result of detecting an anomalous signal. Nevertheless,

this approach will, on average, reduce the uncertainty over a large set of measurements. We

use priors on the Fourier coefficients of natural images to evaluate the performance of the

computational imaging techniques introduced in Chapters 2, 3, and 4.

Throughout this thesis, we assume that the number of plenoptic samples M is equal

to the number of unknown representation coefficients N . Then image formation for a

computational imaging system can be written as a fully determined system of equations.

If the conditioning of the system is sufficient, the unknowns can be recovered via linear

inversion. Under certain conditions, it is feasible to solve the system of equations when the

number of unknown signal coefficients is larger than the number of measurements. Such

an imaging system is referred to as compressive because the signal is more compact in the

measurement basis than it is when measured directly. This topic will not be treated in this

thesis, except for brief discussions in Chapters 5 and 6.

We also mention that in certain cases the captured images may not be intended for

human consumption. In this case it may not be necessary to decode images at all, and

algorithms can be developed to deal with encoded images directly. It is even possible to

design the imaging system so that it is tailored to work efficiently with a specific algorithm.

This can be useful if, for instance, the algorithm inherently transforms the data to some

embedded lower dimensional space. Then the number of samples used directly by the

algorithm may be less than the number of samples captured by the imaging system. In

this case, the most efficient sampling scheme will make measurements directly in the lower

dimensional space. This strategy will maximize the sampling efficiency, so that all captured

information can be used directly by the algorithm. This technique is sometimes called “task-

specific” imaging because the imaging system is closely coupled with the computational task

at hand. Task-specific imaging systems have been developed for image classification tasks

such as face detection and recognition [Nayar et al., 2006a][Nayar et al., 2004][Pal and
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Neifeld, 2003][Ashok et al., 2008]. Most of this thesis deals with images that are intended

for human consumption, but task-specific imaging is discussed again in Chapter 6.

1.3 Functionality, Resolution, and Blur

We have broadly defined functionality as the ability to flexibly sample the radiometric and

geometric properties of a scene. An important aspect of sampling is the resolution that

we can sample at. For conventional imaging, choosing the sampling resolution amounts to

choosing the size of the support of the sampling basis. We typically want to sample at as

high resolution as possible, which would indicate that we want to choose small support.

However, the choice of sampling resolution has a large impact on the amount of image blur

exhibited by the imaging system.

Image blur is a result of coupling between plenoptic coordinates in the representation

basis. For instance, suppose we know that objects are moving at a speed of s in direction

θ and we can write our representation basis as

rj(p) = ⊓
(

x− j∆x− st

∆x

)

⊓
(

t

∆t

)

, (1.9)

where we consider only a 2D space-time volume for simplicity. If we use the sampling basis

from Equation 1.4, the transfer matrix H becomes

Hij =

∫ ∞

−∞
⊓
(

x− i∆x

∆x

)

⊓
(

x− j∆x

∆x+ s∆t

)

dx (1.10)

If the exposure duration ∆t is small enough so that s∆t < ∆x, the transfer matrix

H becomes the identity matrix. However, if the exposure duration is larger, the matrix

becomes a banded diagonal matrix. This matrix will be ill-conditioned, so that the signal

cannot be recovered without the aid of prior information. Even with the aid of prior

information, the conditioning may still be poor enough to result in a large amount of

uncertainty in the recovered signal. Thus, we are left with two possible ways to ensure a

robust signal measurement: either ensure that ∆t is small enough, or choose a sampling

basis that ensures the system transfer matrix H is well conditioned. This thesis focuses
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extensively on this problem. In Chapters 2, 3, and 4, we focus on the choice of sampling

basis that results in a well-conditioned transfer matrix.

In Equation 1.9, there is a coupling between angular and temporal coordinates that

resulted in the transfer matrix H being a blur matrix. The blur is caused by the motion of

objects in the scene. We see the same type of coupling between angular and spatial coor-

dinates for defocus blur. Then the blur is the result of objects spanning a range of depths.

This type of blur is discussed in Chapters 2 and 3. We also see a coupling between angular

and spatial coordinates when lenses exhibit geometric aberrations, which is discussed in

Chapters 3 and 4.

1.3.1 Shift Invariant Blur and Convolution

Equation 1.7 is a general expression for the image formation of any computational tech-

nique. We have left ourselves open to the possibility that our sampling scheme is arbitrarily

complex, and as a result, we must consider a system transfer matrix must have a general

form. However, in many cases, the sampling scheme takes a special form that allows us to

rewrite the image formation equation in simpler terms.

In the previous section, we discussed scenarios when the system transfer matrix is banded

diagonal. This type of blur is unique because it is shift invariant: the amount of blur is

identical for each pixel. Shift invariant blur leads to a special relationship between the

measured image g and the input signal f . The vector of measured values g are samples of an

underlying continuous energy distribution that is incident on the sensor g(x, y). When the

blur is shift invariant, we can relate the input signal to the blurred signal in the continuous

domain

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)h(x′ − x, y′ − y)dxdy (1.11)

Equation 1.11 is a convolution between a shift invariant blur function and the input

signal, sometimes written as g(x, y) = h(x, y)
⊗

f(x, y). The function h(x, y) is referred to

as the Point Spread Function (PSF) of the imaging system. If the input image is a single

point, the blurred image will be equal to a shifted version of the PSF.
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Convolution has the unique property that it can be represented compactly by first

performing a transformation on the functions g, h, and f . We define the functionsG(ωx, ωy),

H(ωx, ωy), and F (ωx, ωy) as the Fourier transform of the functions g, h, and f , respectively.

The coordinates (ωx, ωy) are spatial frequency coordinates. In the Fourier domain, Equation

1.11 can be written as a multiplication.

G(ωx, ωy) = F (ωx, ωy) ·H(ωx, ωy) (1.12)

The function H is referred to the Optical Transfer Function (OTF), and its modulus

is referred to as the Modulation Transfer Function (MTF). The OTF and MTF indicates

the amount that different frequencies are suppressed by the imaging system. For imaging

systems, H is usually a low-pass filter. Note that Equation 1.12 gives a simple way to solve

for the unknown signal f(x, y). The Fourier transform of the signal can be found as

F (ωx, ωy) =
G(ωx, ωy)

H(ωx, ωy)
, (1.13)

and then an inverse Fourier transform can be applied to recover the signal. This process

is referred to as deblurring the captured image g(x, y). The process of deblurring is compli-

cated by two factors. The first is the possibility of zero values in the OTF that will result

in incorrect values calculated in Equation 4.19. The second complication is the presence of

noise in the imaging system, which prevents the image f(x, y) from being calculated exactly.

In this case, Equation 4.19 will not give the best estimate, and other deblurring techniques

should be used instead.

Chapters 2 and 3 analyze the shift invariant blur caused by defocus. Chapter 4 analyzes

shift invariant blur caused by geometric aberrations. Different techniques for deblurring

images are used throughout this thesis. In some cases, we deblur images directly using

Equation 4.19. In other cases, deblurring is done assuming some structure in the Fourier

transform of the signal F (ωx, ωy), as discussed in Section 1.2.1. In other cases, different

assumptions are made about the signal to assists in robust estimation of the unknown image.

In Chapter 5, we return to the form of generalized multiplexing expressed by Equation 1.7,
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and we analyze the performance of both general and shift invariant transfer functions within

a unified framework.

1.4 Tradeoffs in Imaging

According to the computational imaging paradigm, we jointly consider the optics and sensor

as an information channel that transmits information about the plenoptic function. There

are physical limitations on this channel that prevent us from achieving an arbitrarily high

information capacity. We seek to capture some information about the plenoptic function,

be it angular, spatial, wavelength, or temporal information, but we are limited in how we

can capture this information. We are forced to make tradeoffs in how we capture data.

This thesis discusses five main areas where we are forced to make trade-offs when designing

computational imaging systems: plenoptic resolution, efficiency vs. functionality, best case

vs. average case performance, resolution vs. scale, and performance vs. complexity.

1.4.1 Plenoptic Resolution

Digital imaging sensors are highly parallel sensing mechanisms. They can sample light

energy at millions of different spatial locations within a fraction of a section. Each sample is

converted to a digital number with a fixed amount of precision. Ultimately the information

capacity of the sensor is determined by the number of bits/second that can be shuffled

around and passed on for further digital processing. Because our sensors have a limited

bandwidth, we have a fixed number of samples that we can distribute among plenoptic

coordinates, and a fixed amount of dynamic range that we can represent each sample with.

So there is a trade-off in sampling resolution between space, time, and so on. The same

trade-off exists between sampling resolution and dynamic range.

Ultimately we need to map our plenoptic samples to spatio-temporal information cap-

tured by a 2D sensor (see Figure 1.4). Methods can be divided into techniques that employ

spatial multiplexing to capture all the information in a single frame, and methods that

employ temporal multiplexing and therefore require multi-frame capture. Examples of the

former include the use of Bayer filters, assorted pixels for High Dynamic Range (HDR)
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Figure 1.4: One of the main tradeoffs faced in imaging. Because our sensor has a limited

bandwidth, we have a fixed number of samples that we can distribute among plenoptic

coordinates. So there is a tradeoff in sampling resolution between space, time, angle and

wavelength.

[Nayar and Mitsunaga, 2000] and multispectral imaging [Narasimhan and Nayar, 2005],

light field capture [Adelson and Wang, 1992] [Ng et al., 2005] [Veeraraghavan et al., 2007]

[Lanman et al., 2008], and compressive video capture [Hitomi et al., 2011] [Reddy et al.,

2011]. Examples of the latter include sequential HDR capture [Debevec and Malik, 1997]

[Hasinoff et al., 2010], panoramic cameras [Wilburn et al., 2005] [Nomura et al., 2007],

superresolution [Ben-Ezra et al., 2004] [Ben-Ezra et al., 2005], sequential multispectral cap-

ture [Chakrabarti and Zickler, 2011] [Berns et al., 2005], and time-multiplexed light field

capture [Liang et al., 2008].

1.4.2 Efficiency vs. Functionality

Conventional cameras typically decrease in functionality as they increase in efficiency. For

instance, smaller pixels sample at higher spatial resolution, but collect less light. Narrow

bandwidth wavelength filters sample at higher spectral resolution, but are less efficient

as a result. Some computational imaging techniques aim to increase resolution without

sacrificing efficiency. For instance, superresolution techniques recover images with small

pixels from images captured with larger pixels [Ben-Ezra et al., 2004] [Ben-Ezra et al.,

2005]. Hadamard spectroscopy recovers narrow band spectral samples from a set of highly
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Figure 1.5: The tradeoff between optical efficiency and functionality for large DOF cam-

eras. Conventional cameras decrease in DOF as they increase in efficiency. Computational

techniques to extend DOF, such as Spectral Focal Sweep (see Chapter 3) and Diffusion

Coding (see Chapter 2) increase efficiency without sacrificing DOF.

efficient spectral filters [Harwit and Sloane, 1979] [Hanley et al., 1999].

We see the same tradeoff between functionality and efficiency when dealing with image

blur. For a conventional imaging system, defocus causes blur that is depth dependent. The

range of depths that produce defocus blur smaller than a pixel is referred to as the Depth

Of Field (DOF) of an imaging system. Defocus blur increases with increasing aperture

size, causing a decrease in DOF. In other words, conventional cameras lie on a curve in an

Efficiency vs. DOF trade-off space, as seen in Figure 1.5). The Diffusion Coding technique

introduced in Chapter 2 and the Spectral Focal Sweep technique introduced in Chapter 3

are examples of Extended DOF (EDOF) techniques. EDOF techniques use computations

to simultaneously achieve high efficiency and a large DOF.

We see a similar trade-off between efficiency and resolution in cameras that use lenses

with significant geometric aberrations (In fact, we can think of defocus blur as a specific

type of geometric aberration). All aberrations produce blur that depends on the size of the
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Figure 1.6: The tradeoff between optical efficiency and functionality for high resolution

cameras. The resolution of conventional cameras which exhibit geometric aberrations de-

crease as efficiency increases. The Gigapixel Computational Camera introduced in Chapter

3 increases efficiency without sacrificing resolution.

aperture. The size of the blur limits the resolution of images created by the lens. We can

always decrease the size of the blur, and hence increase resolution, by decreasing our aper-

ture size. However, decreasing our aperture size decreases the amount of light collected by

the camera. The gigapixel camera introduced in Chapter 4 uses a computational approach

to remove blur, and consequently is able to maintain high efficiency at high resolutions (see

Figure 1.6).

1.4.3 Best vs. Average Performance

Often we are faced with a dilemma where we want to optimize the performance over a given

domain, but there are some constraints that do not allow us to simultaneously maximize

average and best case performance. The dilemma is that one one hand, we want perfor-

mance to be as large as possible, but we want to ensure that performance does not vary

significantly over the domain. We are forced to make a tradeoff between best case and

average performance. This is the case for the EDOF techniques introduced in Chapters 2
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Figure 1.7: EDOF cameras sacrifice best case performance for average case performance.

The performance is measured as the MTF of the camera system as a function of depth.

and 3, where the domain of interest is the range of object depths in the scene.

Here, we measure performance in terms of the MTF of the imaging system, which relates

directly to the performance of the computational technique. For a conventional camera, the

MTF reaches the ideal maximum when objects are located in the focal plane. However,

the MTF decreases rapidly when objects are located away from the focal plane. A large

variation in the MTF as a function of depth translates to a poor average performance. For

an EDOF camera, the MTF does not reach the ideal maximum when objects are located at

the focal plane, but the MTF remains constant at other depths, and the average performance

is improved (see Figure 1.7).

Ideally we would like the best and average performance to be the same. Then, we

could achieve the same performance for an EDOF system as for a camera at best focus.

Ultimately, we are forced to make a trade-off due to physical constraints in the imaging

system. This means that we cannot create an EDOF camera with the same performance as

a conventional camera at best focus – we have to sacrifice best case performance to improve

average performance.

This EDOF example demonstrates the trade-off between creating an MTF that is both
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Figure 1.8: Resolution scales rapidly with camera size for ideal diffraction limited lenses.

However, in practice, resolution reaches a plateau due to geometric aberrations. The Gi-

gapixel Computational Camera introduced in Chapter 3 breaks the aberration limit so

that resolution continues to increase with camera size, despite the presence of geometric

aberrations.

maximal and invariant to depth. This example relates to the problem of removing defocus

blur, but we see the same trade-off for systems that exhibit motion blur. An EDOF camera

is designed to create a depth independent blur that can be removed computationally. Mo-

tion invariant cameras create motion invariant blur that can be removed computationally.

Chapter 5 discusses performance limits for computational cameras that are invariant to

blur.

1.4.4 Resolution vs. Scale

The resolution of a camera system depends on both the amount of blur caused by the optics,

and the size of pixels in the sensor. Since the optical resolution is the limiting factor, it

usually makes little sense to use pixel sizes greater than the optical blur. The total number

of resolvable points of the camera then becomes the optical blur size divided by the size of

our sensor. We can usually resolve more points when we uniformly scale up our camera, so
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Figure 1.9: Performance vs. Complexity for the Spectral Focal Sweep camera (see Chapter

3). A conventional camera achieves higher performance than the Spectral Focal Sweep

camera, but at the cost of a significant increase in complexity.

that the sensor size increases and the FOV and F/# remain fixed.

In the ideal case, blur is only caused by diffraction from the lens aperture, is independent

of scale, and resolution scales rapidly with camera size (see Figure 1.8). However, in practice,

lenses exhibit geometric aberrations that determine the blur size of the lens. When a lens

exhibits geometric aberrations, these aberrations begin to dominate diffraction as the scale

increases, causing resolution to reach a plateau. The Gigapixel Computational Camera

introduced in Chapter 3 breaks the aberration limit so that resolution continues to increase

with camera size, despite the presence of geometric aberrations.

1.4.5 Performance vs. Complexity

From a practical point of view, there are cost factors in building a camera, for instance the

size and weight, the power consumption, the number of lenses, and so on. There is a tradeoff

between the performance we can achieve and the cost we are willing to accept. For instance,

in Chapter 3, we intentionally use a lens which exhibits chromatic aberrations to extend

DOF. Because the lens is uncorrected, it is much less complex than a conventional lens (see
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Figure 1.10: The performance of computational cameras with spherical optics as a function

of lens complexity. As the complexity increases from left to right, more spherical shells are

used in the lens, and the performance increases.

Figure 1.9). The DOF is increased with the uncorrected lens, but the best case performance

decreases as a result, as discussed in Section 1.4.3. In this case, we see only a relatively

small decrease in performance resulting from a relatively large decrease in complexity. The

loss in performance may be acceptable if the cost in manufacturing lenses with increased

complexity is significant.

We also see a trade-off between performance and complexity in Chapter 4, where we

discuss the performance of computational cameras with spherical optics. Figure 1.10 shows

that, as the complexity of spherical lenses increases from left to right, the performance of

the computational camera increases. However, the increase in performance is sub-linear, so

there is less performance benefit with increasing complexity. Depending on manufacturing,

tolerancing and alignment considerations, the small performance advantage offered by lenses

with large complexity may not warrant the dramatic increase in cost.
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Figure 1.11: A pinhole camera exhibits no defocus blur and produces a system transfer

function that is an identity matrix.

1.5 Performance Limits for Computational Imaging

In Section 1.3, we discussed how computational cameras capture images encoded by the

system transfer matrix, and how image blur can be removed by inverting Equation 1.7, or

in the case of shift-invariant blur, Equation 4.19. Computational cameras allow blur to be

removed, and at the same time maintain high optical efficiency. However, we can always

remove blur by using a conventional camera that is less optical efficiency (i.e. we can reduce

exposure time for motion blur, or reduce aperture size for defocus blur). Therefore, when

we evaluating the performance of a computational camera, we need to compare against the

performance of a conventional camera.

As an example, consider the problem of defocus blur. A pinhole camera exhibits no

defocus blur, and thus the system transfer function is an identity matrix (see Figure 1.11).

A pinhole camera is extremely inefficient because it has a very small aperture through which

light is allowed to pass before hitting the sensor. The less optically efficient the imaging

system, the weaker the signal that is captured by the sensor. Because we want our signal

to be as strong as possible, we may consider opening up our aperture to collect more light.

However, defocus causes a coupling between spatial and angular coordinates that results in

a transfer matrix that is banded diagonal (see Figure 1.12).

The system transfer matrix is no longer an identity matrix, and there is no longer a

one-to-one mapping between sample and signal coefficients. We are left with two choices.
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Figure 1.12: Increasing the aperture size increases the efficiency, but it also produces defocus

blur that results in a poorly conditioned system transfer matrix.

We remain in the conventional imaging paradigm by changing to a lower resolution signal

representation. Then the mapping becomes one-to-one, but our resolution has decreased.

Alternatively, we can stick with the same signal representation and adopt a computational

approach. We can estimate the signal by inverting Equation 1.7. However, in this case,

the system transfer matrix is ill-conditioned, and therefore the unknown signal f cannot be

estimated from the plenoptic samples g without the use of prior information.

All is not lost, however, because we have the flexibility of choosing a new sampling

strategy. For instance, we can “code” the aperture using a transparency pattern (see Figure

1.13). Depending on the choice of aperture pattern, this sampling strategy can produce a

transfer matrix with much better conditioning [Levin et al., 2007][Veeraraghavan et al.,

2007][Zhou and Nayar, 2009].

Both the pinhole camera and the coded aperture camera can produce an image that

is free of blur, however, the coded aperture camera captures an image with much greater

optical efficiency. We have a vague sense that greater optical efficiency is desirable because it

increases the signal strength of captured images, but we still haven’t determined concretely

which technique produces better performance: the pinhole or coded aperture camera. There

are two determining factors in evaluating performance: the conditioning of the transfer

matrix and the noise model. When we code the the aperture, we increase the conditioning

of the transfer matrix so that blur can be removed without sacrificing optical efficiency.

However, depending on the noise model, an increase in efficiency may actually increase the
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Figure 1.13: By placing a transparency pattern in the aperture of the lens, we can improve

the conditioning of the transfer matrix without a significant sacrifice in efficiency.

noise level as well as increasing the signal strength. So we need to be more specific about

the the noise model before we can make any concrete statements about the performance of

computational cameras. In Chapter 5, we introduce a detailed noise model, and we derive

bounds on the maximum performance advantage that a computational camera can have

over a conventional camera. The results are somewhat surprising – we will see that an

increase in optical efficiency does not always produce the boost in performance that might

be expected, and that there are some concrete limits on the performance we can get out of

computational cameras.
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Chapter 2

Diffusion Coding

2.1 Introduction

In Chapter 1 we discussed the trade-off between efficiency and Depth Of Field (DOF).

The amount of defocus blur depends on the aperture size and the distance from the focal

plane. To decrease defocus blur and increase DOF, the aperture size must be decreased,

reducing the signal strength of the recorded image as well. However, stopping down the lens

aperture is not always an option, especially in low light conditions, because it it decreases

the Signal-to-Noise Ratio (SNR) and corrupts the signal.

The fundamental problem with increasing the DOF of conventional cameras is that

defocus blur is depth dependent. If the depths of objects in the scene are known, it is possible

to remove the blur computationally. However, high precision depth estimation is error prone,

and difficult (if not impossible) without the aid of additional hardware, such as that used in

structured light or laser scanning systems. We are interested in simultaneously maximizing

performance averaged over depth, and producing depth-invariant blur, so that we can deblur

captured images without knowing depth ahead of time. The cost of maximizing average

performance however, is that we must sacrifice best case performance.

Two well-studied techniques that produce a depth-invariant Point Spread Function

(PSF) are wavefront coding [E. R. Dowski and Cathey, 1995], which uses a cubic phase

plate, and focal sweep [Nagahara et al., 2008] [Häusler, 1972], where either the object, sen-

sor position, or lens focus setting is mechanically varied during exposure. Recently, Baek
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compared the degree of depth-invariance of these two techniques, and observed that fo-

cal sweep gives a near-optimal tradeoff between Modulation Transfer Function (MTF) and

depth-invariance at all frequencies [Baek, 2010], while wavefront coding is only guaranteed

to be optimal at a single frequency.

Typically, when deblurring a noisy image, a larger magnitude MTF will result in less

deblurring reconstruction error. However, this is only the case if the PSF is completely

depth-invariant. This consideration is of utmost importance in the context of Extended

Depth Of Field (EDOF) cameras because, in practice, it is only possible to produce a PSF

that is approximately depth-invariant, and the amount of variation determines the severity

of the artifacts that are introduced in the deblurring process.

In this chapter, we introduce a new diffusion coding camera that produces near identical

performance to focal sweep, but without the need for moving parts. This is achieved by

using optical diffusers placed in the pupil plane, which scatter light in such a way as to

produce a depth-invariantblurred image. This image can then be deblurred to create an

EDOF image, just like the focal sweep cameras of [Nagahara et al., 2008] [Häusler, 1972],

but with without the need for moving parts. Like phase-plates, diffusers have the advantage

of being almost completely non-absorptive, and thus do not sacrifice signal intensity. We

coin the term diffusion coding to mean a camera with a diffuser placed in the pupil plane.

We characterize diffusers as kernels that operate on a 4D light field propagating from a

camera lens to sensor. As a result, we are able to obtain an analytical solution for the PSF

of our diffusion coded camera, which is given in Section 2.4.

Levin et al. show that wavefront coding produces better results than focal sweep if

variation in the PSF is not taken into account [Levin et al., 2009]. As can be seen from

Figure 2.1, wavefront coding recovers more detail than other methods for objects at the focal

plane when the correct PSF is used for deblurring. However, the method also introduces

noticeable artifacts for objects at different depths because the PSF varies significantly with

depth. To measure the degree of depth-invariance of a camera, we compute the deblurring

reconstruction error for objects at different depths. The result is shown in Figure 2.2, where

a flatter curve signifies more similarity between PSFs at different depths. We note that the

focal sweep camera produces a PSF that is more depth-invariant than wavefront coding,
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Figure 2.1: Simulated image performance for three EDOF cameras. An IEEE resolution

chart is placed at different depths. The aperture size A and defocus slope in light field space

s0 are chosen so that the maximum defocus blur diameter is 100 pixels. The center PSF

is used for deblurring, producing the images shown in (b). Close-ups in (c) show that the

sharpest image is produced by wavefront coding at the center depth (s0A = 0). However,

wavefront coding produces significant deblurring artifacts for defocus values as small as

s0A = 33 pixels, while diffusion coding produces near identical results for the entire depth

range.

and furthermore that our diffusion coded camera produces near identical results to that of

focal sweep. The comparison of EDOF Cameras is discussed further in Section 2.5.

We focus our attention on the use of diffusers with predefined scattering properties,

and do not address the task of diffuser design. Much work has been done in recent years

to develop custom diffusers with tailored scattering profiles. These diffusers are frequently

used in lighting and display applications to produce uniform illumination or arbitrary beam

shaping. The popularity of these diffusers has also led to much innovation in replication

techniques, so that today several companies sell off-the-shelf diffusers reproduced onto plas-
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tic sheets up to 36” wide [Luminit, 2011] [RPC, 2011]. In Section 2.6, we introduce our

implementation of a diffusion coded camera using a custom diffuser manufactured by RPC

Photonics [RPC, 2011]. We conclude with examples of EDOF images taken with our im-

plementation in Section 2.7.

2.2 Related Work

Optical diffusers and other random surfaces have been used to assist in a variety of imag-

ing tasks, including super-resolution [Ashok and Neifeld, 2003][Ashok and Neifeld, 2007],

lenseless imaging [Freeman et al., 2006], and extended DOF [Garćıa-Guerrero et al., 2007].

In this work, we focus on the task of using diffusers to extend DOF.

Several radially symmetric phase masks have been introduced to extend DOF [Chi and

George, 2001] [Ojeda-Castaneda et al., 2005][Garćıa-Guerrero et al., 2007]. The work most

similar to ours is by Garcia-Guerrero et al., who also use a radially symmetric diffuser. To

design their diffuser, the authors take a completely different approach than the technique

described in Section 2.6. They derive a random surface that on average produces a PSF

whose value at the center is constant over a large depth range, while we derive a diffuser
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Figure 2.2: The deblurring error (based on simulations in Section 2.5) as a function of depth

for three EDOF cameras. A flatter curve denotes less PSF variation. The diffusion coding

curves are very similar to that of focal sweep.
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whose entire PSF is approximately depth-invariant. The Garcia-Guerrero diffuser consists

of annular sections of quadratic surfaces, where the width of the annulus decreases quadrat-

ically with distance from the optical axis. This design requires the feature size to decrease

from the center to the edge of the diffuser. The minimum feature size is limited by the fab-

rication technology that is used to make the diffuser. In Section 2.6 we consider the use of

laser machining technology that has a minimum spot size on the order of 10µm. The result

is that the performance of one instance of the Garcia-Guerrero diffuser varies significantly

from the expected performance while the diffuser we introduce in Section 2.6 performs very

close to the expected performance (see Figure 2.11). This difference is discussed further in

Section 2.6.

Wavefront coding was introduced by Dowski and Cathey [E. R. Dowski and Cathey,

1995], who place a cubic phase plate (CPP) in the pupil plane of a camera system. Dowski

et al. show analytically that a camera with a cubic phase plate produces a PSF that

is approximately invariant to defocus. Although the CPP does produce a PSF that is

approximately depth-invariant, the PSF is not as invariant as the focal sweep camera or

our diffusion coded camera (see Figures 2.1 and 2.2).

Focal sweep cameras produce a depth-invariant PSF by sweeping either the object [Häusler,

1972] or sensor [Nagahara et al., 2008] along the optical axis during exposure. The PSFs for

these techniques preserves high frequencies because each object is instantaneously in focus

at one point during exposure. Focal sweep techniques require the use of moving parts and

introduce limitations on the minimum exposure time.

Levin et al. compare the performance of focal sweep and wavefront coding cameras with-

out considering the effect of depth-invariance [Levin et al., 2009]. Hasinoff et al. analyzed

the SNR characteristics of both focal sweep and wavefront coding cameras when multiple

exposures with different focus settings are used [Hasinoff et al., 2009], and Baek compared

the MTF and depth-invariance of focal sweep and wavefront coding cameras [Baek, 2010].

Other works exist in the vision community which recover an EDOF image after first

estimating scene depth [Levin et al., 2007] [Levin et al., 2009] [Zhou and Nayar, 2009]. The

quality of these techniques, however, is closely coupled to the precision of depth estimation,

since each region in the image is deblurred using an estimated defocus PSF.
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Figure 2.3: The geometry of an image point focused at a distance d0 from the camera lens

aperture. A sensor is located a distance fl from the aperture. A ray at piercing the aperture

at location u intersects the sensor at location x− s0u. where s0 =
d0−fl
d0

.

We use a light field [Levoy and Hanrahan, 1996] parameterization to understand the

properties of imaging systems. Several researchers have analyzed the image formation of

camera systems as projections of light fields [Ng, 2005][Veeraraghavan et al., 2007][Levin et

al., 2009]. In addition, several authors have looked at light fields in the frequency domain,

including image formation and interactions between transmissive and reflective objects [Ng,

2005][Durand et al., 2005][Veeraraghavan et al., 2007].

2.3 Light Field Analysis

A light field l(u,x) can be used to represent the 4D set of rays propagating from an ideal

lens with effective focal length (EFL) fl to a sensor. The vector u = (u, v) denotes the

coordinates on the u-v plane, which is coincident with the exit pupil of the lens. The vector

x = (x, y) denotes the coordinates on the x-y plane that is coincident with the sensor. Note

that this is a slightly different convention than used by Levin et al., where the x-y plane is

defined in object space [Levin et al., 2009]. The irradiance g(x) observed on the sensor is

simply the light field integrated over all ray angles:
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g(x) =

∫

Ωu

l(u,x)du, (2.1)

where, Ωu is the domain of u. For a scene with smooth depth variation, locally, the captured

image g(x) can be modeled as a convolution between a depth-dependent PSF kernel h(x)

and an all-in-focus image k(x). The EDOF goal is to shape the camera PSF so that the

entire image f(x) can be recovered from the captured image g(x) by deblurring with a

single PSF h(x). We analyze the depth-dependence of the camera PSF by considering

the image produced by a unit energy point source. Consider a point source whose image

comes to focus at a distance d0 from the aperture of the lens (see Figure 2.3). Assuming a

rectangular aperture of width A, the light field produced by this point is

lδ(u,x) =
1

A2
⊓
(u

A

)

δ(x − s0u), (2.2)

where s0 = d0−fl
d0

is the defocus slope in light field space, and ⊓ is the multi-dimensional

box function

⊓
(x

w

)

=



















1 if |xi| < w
2 , ∀i

0 otherwise

. (2.3)

The image of this point is the camera PSF at the depth d0, which is the familiar box

shaped PSF with defocus blur width s0A:

h(x) =
1

s20A
2
⊓
(

x

s0A

)

. (2.4)

We now analyze the effect of a general kernel d applied to a light field l, which represents

the effect of a diffuser placed in the aperture of a camera lens. The kernel produces a new

filtered light field l′, from which we can derive the modified PSF h′:
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l′(u,x) =
∫

Ω
u
′

∫

Ω
x
′

d(u,u′,x,x′)l(u′,x′)du′dx′, (2.5)

h′(x) =
∫

Ωu

l′(u,x)du, (2.6)

where Ωx is the domain of x. This approach allows us to express a large class of operations

applied to a light field. For instance, consider a kernel of the form

d(u,u′,x,x′) =
1

w2
δ(u− u′) ⊓

(

x− x′

w

)

. (2.7)

Note that here D takes the form of a separable convolution kernel with finite support

in the x domain. The geometric meaning of this kernel is illustrated in Figure 2.4. Each

ray in the light field is blurred so that, instead of piercing the sensor at a single location,

it contributes to a square of width w. In order to understand the effect of the diffuser, we

compare an image g(x) captured without the diffuser to an image g′(x) captured with it.

For this diffuser kernel, substituting Equation 2.7 into Equations 2.5 and 2.6 gives:

h′(x) =
1

w2
⊓
(x

w

)

⊗ h(x), (2.8)

where ⊗ denotes convolution. The modified PSF is simply the camera PSF blurred with a

box function. Therefore, the effect of the diffuser is to blur the image that would be captured

were it not present. Introducing the diffuser given by the kernel in Equation 2.7 is clearly

not useful for extending depth of field since it it does not increase depth independence or

preserve high frequencies in the camera PSF. We note that, in general, the kernel for any

diffuser that is placed in the aperture takes the form

d(u,u′,x,x′) = δ(u− u′)k(u,x − x′), (2.9)

where k is called the scatter function. That is, the diffuser has no effect in the u domain,

but has the effect of a convolution in the x domain. For the diffuser given by Equation 2.7,

the scatter function is the 2D box function k(u,x) = 1
w2 ⊓

(

x

w

)

.
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Figure 2.4: For the diffuser defined by the kernel in Equation 2.7, the diffusion angle does

not vary across the aperture. Each ray is blurred so that it covers an area on the sensor

determined by the the diffuser parameter w.

2.4 Radially Symmetric Light Fields

We now change from rectangular coordinates (u, v, x, y) to polar coordinates (ρ, φ, r, θ) using

the relations u = ρ cosφ, v = ρ sinφ, x = r cos θ, and y = r sin θ. We consider a polar system

where ρ, r ∈ (−∞,∞) and θ, φ ∈ (0, π) and a circular aperture with diameter A. The light

field representing a unit-energy point source located at distance d0 in this new system can

be written as

lδ(ρ, r) =
4

πA2
⊓
( ρ

A

) δ(r − s0ρ)

π|r| , (2.10)

which is independent of both θ and φ because the source is isotropic. Note that verifying

unit-energy can be carried out trivially by integrating lδ(ρ, r) in polar coordinates (see

Section A.2). Comparing the parameterizations for the light field of a point source in

Equations 2.2 and 2.10, we can see that a slice of lδ(x,u) represents a single ray, while a

slice l(ρ, r) represents a 2D set of rays. In the radially symmetric parameterization, a slice

of the light field represents a conic surface connecting a circle with radius ρ in the aperture

plane to a circle of radius r on the sensor (see Figure 2.5).

We now consider the effect of a radially symmetric diffuser on the camera PSF. Some-

what surprisingly, a diffuser that is parameterized in these reduced 2D coordinates produces
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Figure 2.5: The geometry of a radially symmetric light field using reduced coordinates. The

light field consists of a point source focused a distance d0 from the lens aperture. Because

the point source is on-axis and isotropic, the light field can be represented as a 2D function

l(ρ, r). A 2D slice of the light field l(ρ, r) represents the set of rays traveling from a circle

with radius ρ in the aperture plane to a circle with radius r on the sensor. This set of rays

forms a conic surface.

a drastically different effect than the diffuser given by Equation 2.7. When a radially sym-

metric diffuser is introduced, neither the diffuser nor the lens deflects rays tangentially, and

therefore we can represent the diffuser kernel and modified light field using the reduced

coordinates (ρ, r). Equations 2.5 and 2.6 then become

l′(ρ, r) = π2
∫

Ωρ

∫

Ωr

d(ρ, ρ′, r, r′)l(ρ′, r)|ρ′|dρ′|r′|dr′, (2.11)

g′(r) = π

∫

Ωρ

l′(ρ, r)|ρ|dρ, (2.12)

and the general form of the diffuser kernel becomes

d(ρ, ρ′, r, r′) =
δ(ρ− ρ′)
π|ρ′|

k(r − r′, ρ)
π|r| . (2.13)

We use the same box-shaped scattering function as we did for the diffuser kernel in

Equation 2.7:
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w = 0 pix w = 10 pix w = 20 pix w = 20 pix w = 30 pix (deblurred)

Figure 2.6: Simulated photographs taken of of a light field filtered by the diffuser kernel in

Equation 2.14. The parameter w of the diffuser kernel is varied across the columns. The

rightmost figure shows a deblurred diffusion coded image with a 10× increase in DOF.

k(r, ρ) =
1

w
⊓ (

r

w
). (2.14)

However, the physical interpretation of this diffuser is drastically different than for the

previous diffuser. For the previous one, each ray in the light field is scattered so that it

spreads across a square on the sensor. The effect of the scattering function in Equation 2.14

is illustrated in Figure 2.7. In the absence of the diffuser, light from an annulus of width

dρ and radius ρ in the aperture plane projects to an annulus of width dr and radius r

on the sensor. The effect of the scatter function in Equation 2.14 is to spread the light

incident on the sensor so that it produces an annulus of width w instead. We can also

consider the scattering from the perspective of a single ray, as illustrated by the pink and

red volumes in Figure 2.7. In polar coordinates, a ray is a small annular section that travels

from the aperture plane to the sensor plane, illustrated by the red volume in Figure 2.7.

The pink volume illustrates the effect of the diffuser, which is to scatter a ray along a radial

line of width w. We note that a box-shaped scatter function is used here for notational

convenience, but we found that a Gaussian scattering function is superior for extended DOF

imaging (see Figure 2.10(d)).

The light field of a point source filtered by this diffuser kernel and PSF can be shown

to be (see Section A.3 for a complete derivation)
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Figure 2.7: The geometry of a radially symmetric diffuser. The diffuser scatters light only

in the radial direction, and has no effect in the tangential direction. A thin annulus of light

is emitted from the aperture of width dρ and radius ρ. In the absence of the diffuser, the

emitted light projects to an annulus on the sensor of width dr and radius r. When the

diffuser is present, the width of the annulus on the sensor becomes w, the diffuser scatter

width.

l′(ρ, r) =
4

πA2
⊓
( ρ

A

) ⊓( r−s0ρ
w )

πw|r| , (2.15)

h′(r) =
4

πs20A
2

1

w|r|

[

⊓
( r

w

)

⊗
(

⊓
(

r

s0A

)

· |r|
)]

. (2.16)

The analytic solution for the PSF is a piecewise function due to the contribution from

the term in brackets, which is a convolution between the two rect functions (one weighted

by |r|). Note that as the scattering width w is reduced to zero, the first rect (combined with

1
w ) approaches a delta function and the result is the familiar pillbox shaped defocus PSF.

Also note that if a different scattering function is used, the first rect is simply replaced with

the new function. However, the convolution term is far less significant than the 1
|r| term,

whose effect dominates, resulting in a PSF which is strongly depth-independent while still

maintaining a strong peak and preserving high frequencies.

The solution for the PSF may be interpreted in the following way. Please refer to

Figure 2.7. Suppose we have a pillbox defocus PSF, and we want to know how a small

annular region of width δr and radius r will be affected by the diffuser. Light incident on

this region emanates from an annulus in the aperture, and its energy will be proportional

to ρ or equivalently r/s0. This explains the presence of the |r| multiplier within the term
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in brackets. The term in brackets states that the energy in the PSF annulus is spread

uniformly along radial lines of width w, as shown on the right hand side of Figure 2.7. The

1
|r| term in Equation 2.16 can be attributed to the fact that the energy density becomes

larger for light that is scattered closer to the center of the PSF.

Figure 2.8 shows several PSF/MTF pairs for a camera with and without the diffuser

given by Equation 2.16. The defocus blur diameter s0A varies from 0 to 100 pixels. The

scatter function of Equation 2.14 is a Gaussian instead of a box function, and the diffuser

parameter w (the variance of the gaussian) is chosen so that w = 100 pixels. Note that

when the diffuser is present, there is little variation with depth for either the PSF or

MTF. Introducing the diffuser also eliminates the zero crossings in the MTF. For smaller

defocus values, the diffuser suppresses high frequencies in the MTF. However, because the
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Figure 2.8: PSF plots (top) and MTF (bottom) plots for a camera with (red) and without

(green) the diffuser kernel defined in Equation 2.14. The defocus blur diameter s0A is varied

across columns from 0 to 100 pixels, and the diffuser parameter w = 100 pixels. Both the

PSF and MTF exhibit negligible variation when the diffuser is present.
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diffuser MTF does not vary significantly with depth, high frequencies can be recovered via

deconvolution. Figure 2.6 shows a simulated light field filtered by the radially symmetric

diffuser given by Equation 2.14. On the far right of the figure, we show a high contrast,

extended depth of field image that is recovered after deconvolution is applied.

2.5 Comparison between EDOF Cameras

All EDOF cameras sacrifice MTF response at high frequencies in order to achieve depth-

invariance. High frequencies in captured images are recovered via deconvolution, but this

process also amplifies sensor noise which degrades the recovered image. In addition, any

variation in the PSF/MTF as a function of depth will result in deblurring artifacts due to a

mismatch between the actual PSF and the PSF used for deblurring. The quality of an edof

camera can be represented by the deblurring reconstruction error, which takes into account

the camera MTF, the degree of depth-invariance of the PSF/MTF, and sensor noise. To

calculate the deblurring error we compute the Mean Squared Error (MSE) of deblurred

images. The MSE is given by the L2 norm on the difference between the ground truth

(focused) image and the captured image deblurred by a PSF hd(x, y). The captured image

is the ground truth image f(x, y) blurred by a PSF hb(x, y) plus noise η(x, y).

MSE(d) =
∣

∣

∣

∣(f(x, y)⊗ hb(x, y) + η(x, y)) ⊗ h−1
d (x, y)− f(x, y)

∣

∣

∣

∣

2
. (2.17)

This measure takes into account the camera MTF, since it includes the term η(x, y) ⊗
h−1
d (x, y), which represents the amplification of sensor noise due to small MTF values.

In addition, the measure takes into account the degree of depth-invariance of the camera

PSF/MTF because it includes the term f(x, y)− (f(x, y)⊗ hb(x, y))⊗ hd(x, y)
−1, which is

the difference between a ground truth image and the same image blurred by one PSF and

then deblurred by another.

To evaluate the performance of an EDOF camera, we calculate the deblurring error over

a range of depths. If an EDOF camera performs well, it will have a small deblurring error

over all depths. For each camera, we calculated the camera PSF at a variety of discrete

depths and used this as the blurring PSF hb(x, y). For the deblurring PSF hd(x, y), we used
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the camera PSF at the center of the depth range. In all simulations, η(x, y) was set to be

Gaussian white noise with standard deviation σ = .005. Since the deblurring error can vary

with f(x, y), we compute the value over a variety of natural images and take the average.

In Figure 2.2, we show the deblurring error for three EDOF methods. Wavefront coding

achieves the minimum deblurring error for all cameras when the defocus blur diameter s0A

= 0 pixels. This is because the wavefront coding MTF is greater and therefore preserves

more information when deblurred with the correct PSF. However, both diffusion coding and

focal sweep produce a flatter curve that results in less deblurring error at all other depth

locations.

To demonstrate the performance of our EDOF method, we simulated a scene consisting

of an IEEE resolution chart. Simulated defocused images are shown in Figure 2.1(a), where

the maximum defocus blur diameter is s0A = 100 pixels. We apply Wiener deconvolution

with the PSF at the center depth to obtain the EDOF images shown in (b). Close-ups

of the deblurring results are shown in (c). As expected, the sharpest image is produced

by wavefront coding for the center depth. However, wavefront coding produces significant

deblurring artifacts for defocus values as small as s0A = 33 pixels, while diffusion coding

produces near identical results for the entire depth range.

To generate the PSFs for Figures 2.1 and 2.2, we used the analytical solution for the

diffusion coding PSF from Equation 2.16. For the focal sweep camera, we numerically

integrated a sequence of defocus discs which, for the center PSF, represents a range of

defocus blur diameters from 0 to 120 pixels. We performed a numerical search to find

the focal sweep range that produces a local minimum in average deblurring error for this

simulation. We used the raytracing engine in Zemax to numerically compute the wavefront

coding PSFs without the effect of diffraction. To generate the Zemax raytrace, a cubic

refractive surface was used such that the light field integration curve takes the form (x =

au2, y = av2). The optimal value for a was chosen to be a = S/(2A) [Levin et al., 2009],

where S is the maximum value of the defocus parameter s0. Furthermore, we performed a

numerical search to verify that this a produces a local minimum in average deblurring error

for this simulation.
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2.6 Implementing the Diffuser

We consider diffusers of the “kinoform” type [Caulfield, 1971], where the scattering effect is

caused entirely by roughness variations across a surface. Such a diffuser can be considered

a random phase screen, and according to statistical optics, for a camera with effective focal

length fl, and center wavelength λ, the effect of placing this screen in the aperture of the

camera results in the following PSF [Goodman, 1985]:

h′(x, y) ∝ pφu,φv(
x

λfl
,
y

λfl
), (2.18)

where φu and φv are the u and v derivatives of the phase shift induced by the surface, and

pφx,φy is the joint probability of these derivatives. The result of Equation 2.18 is that we

can implement a diffuser simply by creating an optical element with thickness t(u, v), where

the gradient of this surface ▽t(u, v) is sampled from a probability distribution which is also

our desired PSF. Intuitively, we can understand this equation as follows: hφu,φv denotes

the fraction of the surface t(u, v) with slope (φu, φv). For small angles, all incoming rays

incident on this fraction of the surface will be deflected at the same angle, since the slope

is constant over this region. Thus the quantity hφu,φv also reflects the portion of light that

will be deflected by the slope (φx, φy).
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(a) A wedge with thickness t(u) = aλu
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(b) A randomly varying surface

Figure 2.9: A wedge can be thought of as a having a slope drawn from a probability density

function which is a delta function. A diffuser can be thought of as a phase plate with a

randomly varying thickness with a slope that is drawn from a more general probability

density function.
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(a) Diffuser profile (b) Diffuser height map
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Figure 2.10: An implementation of the diffuser defined by the kernel in Equation 2.14. (a),

(b), and (c) show the radial profile, height-map, and radial scatter function of the diffuser

surface, respectively. (d) shows the fabricated diffuser.
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Figure 2.11: The deblurring error as a function of depth for both diffusion coding and the

Garcia-Guerrero diffuser. The dotted lines show the deblurring error for a single instance

of the diffuser surface. The solid lines show the deblurring error averaged over 100 real-

izations of the diffuser surfaces. A single instance of the diffusion coding surface performs

significantly better than the Garcia-Guerrero diffuser.
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In fact, kinoform diffusers can be thought of as generalized phase plates, as shown in

Figure 2.9. In Figure 2.9(a), a wedge with thickness t(u) = aλu is placed in the aperture

of a lens system. The effect of the wedge is to shift the PSF away from the optical axis.

The wedge can be thought of as a having a slope drawn from a probability function h(φu)

which is a delta function. The result of placing a wedge in the pupil plane of a camera is

to shift the PSF, which can be thought of as convolving h(φu) with the PSF. A kinoform

diffuser has a randomly varying surface with a more general probability distribution of

slopes (Figure 2.9(b)).

To implement the diffuser defined in Equation 2.14, we follow the procedure in [Sales,

2003], which simply implements a diffuser surface as a sequence of quadratic elements

whose diameter and sag is drawn from a random distribution. The scatter function is

designed to be roughly Gaussian with 0.5mm variance (corresponding to w = 1mm in

Equation 2.16) as shown in Figure 2.10(c). To create a radially symmetric diffuser, we

create a 1D random profile and then apply a polar transformation to create the final 2D

surface (see Figures 2.10(a) and 2.10(b)). The maximum height of the surface is 3µm. The

diffuser was fabricated using a laser machining technology which has a minimum spot size

of about 10µm. To ensure that each quadratic element was fabricated with high accuracy,

the minimum diameter of a single element was chosen to be 200µm, resulting in a diffuser

with 42 different annular sections. The diffuser used in all our experiments is shown in

Figure 2.10(d), and was fabricated by RPC Photonics [RPC].

To compare the performance of our diffuser surface relative to the analytic PSF from

Equation 2.16 derived using light field analysis, we calculated PSFs for the diffuser surface

using wave optics, and used them to create a deblurring error curve. The resulting curve

is shown as the dotted red line in Figure 2.11, and it is very close to the light field curve

shown in solid red.

We also used wave optics to compare the deblurring error for our diffuser and the diffuser

proposed by Garcia-Guerrero et al. [Garćıa-Guerrero et al., 2007]. For a fair comparison,

we also restricted the feature size of the Garcia-Guerrero diffuser to be 200µm. Since

this design requires features to reduce in size from the center to the edge of the diffuser,

only 21 annular sections could be made to fit within a 22mm aperture. The results are
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shown in Figure 2.11. The solid red and green lines show the deblurring errors for the

diffusion coding and Garcia-Guerrero diffuser, respectively, for PSFs that are averaged over

100 surface realizations. The two curves are very similar, however, a single realization of

the diffusion coding surface performs much closer to the average, as seen from the dotted

red and green lines. In short, given the imposed fabrication limitations, diffusion coding

significantly outperforms the Garcia-Guerrero diffuser.

2.7 Experimental Results

Figure 2.12 shows the PSFs produced when using the diffuser shown in Figure 2.10(d). The

PSFs closely resemble the shape predicted by Equation 2.16 as is evident from the depth-

invariance shown in the figure. The PSFs are normalized to unit intensity by color channel.

The defocus range is chosen so that the normal lens PSF blur diameter ranges between 0

and 1 mm.

Figure 2.14 shows two images taken with a normal lens (Figure 2.14(a) taken with f/4.5

and Figure 2.14(b) taken with f/29) and two images (Figure 2.14(c) before deblurring, and

Figure 2.14(d) after deblurring) taken with the diffuser from Section 2.6. All images are

taken with a 50ms exposure time and the brightness in the f/29 image is normalized. The

example shows that diffusion coding does indeed give far superior results in comparison to

stopping down a lens. The deblurred image in Figure 2.14(d) extends depth of field by

roughly a factor of six.

Figure 2.13 compares images taken with a normal lens to diffusion coded images taken

with the diffuser from Section 2.6. The depth range of each scene is chosen so that the

normal lens PSF blur diameter ranges between 0 and 1 mm. Within each figure, all images

have the same exposure time and aperture setting. In each figure, three images are taken

with the normal lens focusing on the background, middle, and foreground. These three

images are then compared to the diffusion coded image(s). In all examples, the deblurred

diffusion coded images exhibit a significant increase in DOF.

All images were captured with a Canon 450D sensor. To capture diffusion coded images,

the 22mm diameter diffuser from Figure 2.10(d) was inserted into the aperture of a 50mm
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Figure 2.12: Measured PSFs for a 50mm f/1.8 lens without (top) and with diffusion coding

(bottom). Almost no variation is visible in the diffusion coding PSF.

f/1.8 Canon lens. Deblurring of all diffusion coded images was performed using the BM3D

deblurring algorithm [Dabov et al., 2006]. The BM3D deblurring algorithm enforces a

piecewise smoothness prior that suppresses the noise amplified by the deblurring process.

Note that, as discussed in Section 2.5, all EDOF cameras amplify noise in the deblurring

process, and the amount of amplification can be measured by the deblurring error. The

result of using the BM3D algorithm is that while our deblurred images do not look noisy in

comparison to images captured without the diffuser, some of the fine details in the deblurred

images are not preserved.

2.8 Relating Diffusion Coding and Focal Sweep

Equation 2.16 gives an analytic expression for the PSF produced by a diffuser with the

box-shaped scattering function defined by Equation 2.14. In Section 2.7, we experimentally

verified that this type of diffusion coding produces very similar results to focal sweep.

However, it is possible to show analytically that, for a certain type of scatter function, the

diffusion coding produces exactly the same performance as focal sweep.

When we move the sensor to a distance d from the aperture plane, the sensor is no

longer located at the (x, y) plane, which is fixed at a distance of fl. We define the light

field slope of the sensor plane s = (d − fl)/d. The PSF for a point that comes to focus at

distance d0 from the aperture plane is then
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hs(r) =
4

π(s− s0)2A2
⊓
(

r

(s− s0)A

)

. (2.19)

For a focal sweep camera that integrates over a range of light field slopes s ∈ [−S/2, S/2],
the PSF is given by

hfs(r) =
1

S

∫ S/2

−S/2
hs(r)ds (2.20)

=
1

S

∫ S/2

−S/2

4

π(s− s0)2A2
⊓
(

r

(s− s0)A

)

. (2.21)

In Appendix A, we show that, for a point source focused on the focal plane, this PSF can

be written as

hfs(r) =
4

πSA

(

1

|r| −
4

SA

)

⊓
( r

SA

)

. (2.22)

It possible to find an analytic expression for the MTF of the focal sweep camera by taking

the Fourier transform of Equation 2.22. In radial symmetric coordinates, the MTF Hfs(ωr)

is found using the Hankel transform

Hfs(ωr) = 2π

∫ ∞

−∞
J0(πωrr)hfs(r)rdr (2.23)

= 2π

∫ ∞

−∞
J0(πωrr)

1

S

∫ S/2

−S/2
hs(r)dsrdr, (2.24)

(2.25)

where Jk is the kth order Bessel function of the first kind. For point sources located on the

focal plane, the focal sweep MTF becomes

Hfs(ωr) =
1

S

∫ S/2

−S/2

2J1(πsAωr)

πsAωr
ds. (2.26)

= 1F2

(

{1/2}, {3/2, 2},− 1

16
π2S2A2ω2

r

)

, (2.27)



CHAPTER 2. DIFFUSION CODING 47

where pFq is the Generalized Hypergeometric function [Slater, 1966]. It is also possible

to derive a slightly more complicated expression for the focus sweep MTF without the

restriction that the point source be located on the focal plane.

We now return to a special form of diffusion coding. We again consider radially sym-

metric diffusers, but now we consider the case where the scatter profile varies as a function

of aperture coordinates

k(r, ρ) =
1

S|ρ| ⊓
(

r

S|ρ|

)

. (2.28)

The physical interpretation of this scatter function is that the amount of diffusion increases

with distance away from the optical axis. After passing through the diffuser, the light field

of a point source then becomes

l′δ(ρ, r) =
4

πA2
⊓
( ρ

A

) ⊓( r−s0ρ
S|ρ| )

πS|ρ||r| , (2.29)

and, as we show in Appendix A, the PSF is also given by the expression in Equation 2.22.

Furthermore, it is possible to show that the PSF remains identical even at all depths. This

means that a diffuser with the kernel given by Equation 2.28 will also have the same MTF

as a focal sweep camera, given by Equation 2.27, and therefore also have exactly the same

deblurring performance. Unfortunately, it is not entirely clear how to produce a diffuser

with the scatter function given in Equation 2.28, or, for that matter, and scatter function

that varies as a function of aperture coordinates.

2.9 Discussion

The diffusion coding technique introduced in this chapter is an attractive method for com-

putationally extending DOF. In Section 2.3, we showed how to model a diffuser as a kernel

applied to a light field. We then used this notation to guide the design of a depth-invariant

diffuser. The radially symmetric diffuser introduced in Section 2.6 produces a PSF which

achieves a similar performance to a focal sweep camera, but without the need for mechan-
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ical motion. Since focal sweep cameras achieve a near-optimal tradeoff between MTF and

depth-invariance, the introduced diffusion coded camera must also be near optimal.

The fabricated diffuser introduced in Section 2.6 functions close to what is predicted

by the theoretical analysis of Section 2.3. The example EDOF images captured using the

diffusion coded camera demonstrated a significant extension in DOF. However, we have not

given a thorough treatment of the noise model in the analysis of this chapter. We compared

the performance of different EDOF techniques in Section 2.5, but the only performance

comparison between EDOF and conventional cameras (i.e. a stopped down lens) was given

in Figure 2.14. In this example, the same camera sensitivity setting was used for EDOF

and conventional cameras. This is a fair comparison when the signal is very weak, but for

stronger signals, a more fair comparison would be to increase the sensitivity for the less

efficient system. This will cause a change in the noise characteristics of the captured image.

This chapter began with the assumption that an increase in efficiency will lead to an

increase in performance. This is the case when the noise is signal independent. Then

an EDOF technique will have a clear performance advantage over a conventional camera.

However, noise is not always signal independent, and therefore the performance advantage

of an EDOF technique depends on the noise model used. In Chapter 5, we return to the

topic of performance comparison between EDOF and conventional cameras. We introduce

a more complete noise model, and ask what conditions, if any, will preclude an EDOF

technique from achieving a performance advantage over a conventional camera.
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(a) Normal camera at three focus settings

(b) Diffusion coded camera

Figure 2.13: Extending DOF with diffusion coding. All images were taken with a 16ms

exposure time. (a) The top, middle, and bottom images were captured using a a 50mm

f/1.8 Canon lens focused on the background, middle, and foreground, respectively. The

depth of field is too narrow for all objects to be in focus simultaneously. (b) The diffuser

from Section 2.6 is inserted into the lens aperture and deblurring is applied to recover the

EDOF image in (b). Diffusion coding results in a roughly 10× increase in DOF.
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(a) Normal camera (f/4.5)

(b) Normal camera (f/29) (d) Diffusion coded camera (deblurred)

(c) Diffusion coded camera (captured)

(e) Close-ups

Figure 2.14: Noise comparison between a diffusion coded camera and a normal camera. All

images were taken with a 20ms exposure time. (a) Image taken with a f/4.5 camera. The

DOF is too narrow for all objects to be in focus. (b) Image taken with the lens stopped

down to f/29. All the objects are in focus but the noise is significantly increased. (c) Image

taken with the same settings as in (a), but with the diffuser from Section 2.6 inserted into

the lens aperture. All objects are in focus, but the image exhibits a slight haze. (d) Image

obtained by deblurring the one in (c). The image preserves similar detail as in (b), but with

significantly less noise. (e) Close-ups of the images in (a),(b), and (d).
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(a) Normal camera (b) Diffusion coded camera

focus at background focus on foregroundfocus on middle captured recovered

Figure 2.15: Images of a scene consisting of several vases at different depths shot with a

50mm f/1.8 Canon lens. All images were taken with a 12ms exposure time. (a) Images

focused on the background, middle, and foreground from left to right. (b) Images captured

using the diffuser from Section 2.6. The right column shows the result after deblurring.

Close-ups at the bottom show that the recovered image significantly increases DOF.
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(a) Normal camera (b) Diffusion coded camera

(c) Close-ups from (a) (d) Close-ups from (b)

(Focused on background) (Focused on foreground) (Recovered)

Focused on
background

Focused on 
middle

Focused on 
foreground

Captured Recovered

Figure 2.16: Images of a scene consisting of two statues at different depths shot with a

50mm f/1.8 Canon lens. All images were taken with a 10ms exposure time. (a) Images are

focused on the background, middle, and foreground from left to right. (b) Images captured

using the diffuser from Section 2.6. The right image shows the result after deblurring.

Close-ups at the bottom show that the recovered image significantly increases DOF.
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Chapter 3

Spectral Focal Sweep

3.1 Introduction

In Chapter 2, we introduced an EDOF technique that computationally increases DOF by

placing a diffuser in the aperture of the lens. We have seen a number of other techniques for

extending DOF, including the use of coded apertures [Levin et al., 2007][Zhou and Nayar,

2009], phase plates [E. R. Dowski and Cathey, 1995][Levin et al., 2009], or mechanical

motion [Nagahara et al., 2008][Häusler, 1972]. All the EDOF techniques discussed thus far

increase complexity. They require either more optical or mechanical components than a

conventional lens. This chapter approaches the problem of extending DOF from another

perspective – by simplifying the imaging system (see Figure 3.2). The main idea is to take

advantage of the dispersive properties of refractive elements to create depth-independent

blur. This has the advantage of reducing the number of constraints placed on the camera

lens, so that a design with reduced complexity will suffice. The disadvantage is that color

imaging performance suffers.

Refractive materials such as glass and plastic bend light rays according to Snell’s Law.

According to this law, the bending power of a refractive surface is a function of the index

of refraction (IOR) of the material. Because the IOR is in turn a function of wavelength,

rays incident on a refractive surface are deflected different amounts according to their color.

This phenomena is known as chromatic dispersion. In lens design, chromatic dispersion

is considered undesirable because it results in lens aberrations which reduce image quality.
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However, chromatic aberrations produce a very useful property that can be exploited; a lens

with axial chromatic aberrations has a focal length that varies as a function of wavelength.

If such a lens is used with a black and white sensor, the imaging system can be thought of as

possessing a continuum of focal lengths simultaneously. We call such a system a “Spectral

Focal Sweep” (SFS) camera because it uses chromatic aberrations to create the same effect

as existing focal sweep techniques [Nagahara et al., 2008][Häusler, 1972] with one important

distinction: it can be used to extend DOF with no moving parts.

To design a SFS lens, we use an optimization that intentionally maximizes axial chro-

matic aberrations while minimizing other aberrations. This approach can greatly simplify

lens design, reducing the cost and size of the design relative to a conventional lens de-

sign. We use this optimization to engineer a PSF which is not a delta function, but is

approximately invariant to depth and preserves image details over a large depth range.

For a SFS camera, the amount of focal sweep depends on the reflectance spectra of

objects being imaged. The more broadband an object’s spectrum, the wider the focal

sweep. Thus, to function correctly, the camera requires objects being imaged to possess

reasonably broad spectral reflectance distributions. Fortunately, the reflectance spectra of

most real-world objects is sufficiently broadband [Parkkinen et al., 1989]. We have observed

that the SFS camera can effectively increase DOF for a wide variety of scenes (see Section

6, Figures 1, 8-11, and supplementary material). To further verify our claim that a SFS

camera works effectively for most real-world spectra, we simulate the performance of our lens

using the Munsell color database [of Joensuu Color Group, 2011] in Section 5. The Munsell

database consists of 1250 spectrophotometer readings of common reflectance spectra.

It is interesting to note that the SFS camera bears some similarity to NTSC and related

video compression techniques. These techniques exploit the fact that the human visual

system relies much more heavily on luminance information than color. Before compression

is applied, images are first transformed to a different color space such as YUV or NTSC.

After transformation, color channels in the image can be compressed more aggressively

without significant perceptual degradation. The SFS camera can be thought to apply a

similar compression to an image before acquisition. For this reason, the SFS camera can be

used to capture not only black and white images, but color images as well. To deblur color
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(a) An image captured with a corrected lens

(8ms exposure)

(b) An image captured with a SFS camera (8ms

exposure)

(c) The image from Figure 3.1(b) after deblur-

ring

Figure 3.1: Comparison of the SFS camera with a corrected lens. The image shown in

Figure 3.1(a) was taken with a corrected lens. Images shown in Figures 3.1(b) and 3.1(c)

were taken with a SFS camera. Figure 3.1(c) demonstrates that after deblurring, more

detail is visible over a larger depth range when using the SFS camera.

images, we use an approximate method that produces results which are not exact but look

good (see Figures 10 and 11, and supplementary material).

3.2 Related Work

There a number of techniques for extending DOF by increasing the complexity of the imag-

ing system. Examples include all-optical techniques such as apodization [Welford, 1960], or

the use of zone-plates [Ojeda-Castaneda and Berriel-Valdos, 1990] and computer-generated

amplitude holograms [Rosen and Yariv, 1994]. coded aperture techniques. Other examples
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Corrected
Lens

Spectral Focal
Sweep Lens

Figure 3.2: A comparison showing the relative sizes and complexities of a Cosmicar 75mm

F/1.4 lens (left) and our F/4 SFS doublet lens (right). Our lens is significantly lighter and

more compact. The corrected lens is stopped down to F/4 in all experiments.

include the use of phase plates which produce PSFs that are approximately depth invariant

[Chi and George, 2001][E. R. Dowski and Cathey, 1995]. The focus sweep techniques pro-

duce a depth invariant PSF by sweeping either the sensor or object along the optical axis

during exposure [Nagahara et al., 2008][Häusler, 1972].

Other works exist in the vision community which recover an extended DOF image

after first estimating scene depth [Levin et al., 2007][Levin et al., 2009][Zhou and Nayar,

2009]. These techniques also increase complexity by introducing either phase plates or

coded aperture patterns. Furthermore, the quality of these techniques is closely coupled

to the precision of depth estimation, since each region in the image is deblurred using an

estimated defocus PSF.

The work most similar in spirit to the SFS technique is by DxO Optics [Guichard et al.,

2009], which also proposes to extend DOF by exploiting axial chromatic aberrations. This

approach finds the color channel which is best focused and then transfers high frequency

information from this channel to the remaining color channels. The scene details recovered

using this technique are limited by the quality of the best focused channel. We show in the

next section that for a system with axial chromatic aberrations, even the best focused color

channel is blurred. This is because the spectra of real-world materials and the spectral

response of color filters on the image sensor are broadband. Our SFS technique, on the
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other hand, can be considered analogous to existing focal sweep techniques. SFS imaging

creates an approximately depth-invariant PSF. By deconvolving the captured image with

the inverse of this PSF, an extended DOF image is recovered with details very close to what

can be acquired with a corrected lens. In short, the SFS technique is able to recover more

information (and hence DOF) than the frequency transfer method of DxO.

3.3 Theory

In this section, we describe the theoretical foundation for the SFS camera. We first consider

the imaging properties of a ‘thin’ singlet (single element) refractive lens manufactured out

of glass with IOR n(λ), aperture diameter A, and radii of curvature R1 and R2, respectively.

The focal length of this thin lens is [Smith, 1966]

fEFL(λ) = (n(λ)− 1)

(

1

R1
+

1

R2

)

. (3.1)

The dependence of focal length on wavelength is a result of the dispersive property

of refractive materials, and this dependence, referred to as chromatic focal shift or axial

chromatic aberration, is usually considered undesirable (see Figure 3.3). There are several

well-established strategies for reducing its effect, e.g., by pairing two or more individual

elements made from materials with complementary dispersive properties [Geary, 2002].

A singlet is usually insufficient for imaging onto a sensor because it exhibits strong

spherical and field-dependent aberrations. To combat this, more elements are usually in-

troduced to increase the degrees-of-freedom in the lens design optimization. The effective

focal length fEFL(λ) of a compound lens can be calculated directly using the focal lengths

and positions of individual elements. If a compound lens exhibits negligible spherical and

field dependent aberrations, the irradiance E(x, y, λ) of a point source with distance u from

the lens and spectral reflectance R(λ) can be written as

E(x, y, λ) = R(λ) ⊓
[

r

d(λ)

]

, (3.2)

where r =
√

x2 + y2, ⊓ is the circ function:
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400nm 450nm 500nm 550nm 600nm 650nm 700nm

Figure 3.3: A SFS lens design is shown in the top figure. Below, a Zemax raytrace and PSF

simulations are shown for various wavelengths. The lens exhibits strong axial chromatic

aberration.
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if r < d
2
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, (3.3)

d is the chromatic defocus blur width which is determined from the gaussian lens law as

d(λ) = Av

(

1

fEFL(λ)
− 1

v
− 1

u

)

. (3.4)

Here, v is the sensor-to-lens distance, and A is the lens aperture diameter. A black and

white sensor with spectral sensitivity S(λ) will then measure a sampled version of the image

irradiance E(x, y) averaged over wavelength. If we assume that S(λ) is constant with value

1
λ2−λ1

between wavelengths λ1 and λ2, and zero everywhere else, then we can write our PSF

h(x, y) as



CHAPTER 3. SPECTRAL FOCAL SWEEP 59

Type:Surf Comment Radius Thickness Glass Semi-Diameter Conic

1 Standard LE1929 100.89 2.52 BK7 12.70 0

2 Standard 288.20 0.00 12.70 0

3 Even Asphere 48184 49.78 3.40 PMMA 12.70 -1

4 Even Asphere 0.00 75.23 12.70 0

Polynomial Data Parameter 0 Parameter 1 Parameter 2 Parameter 3

3 Even Asphere 0 0 4.28E-07 2.83E-11

Figure 3.4: The lens prescription data for the design shown in Figure 3.3.

h(x, y) =

∫

S(λ)E(x, y, λ)dλ (3.5)

=
1

λ2 − λ1

∫ λ1

λ2

R(λ) ⊓
[

r

d(λ)

]

dλ. (3.6)

Thus, the PSF for the SFS camera is a continuous sum of scaled concentric discs. We

note that if fEFL(λ) varies linearly and the reflectance spectrum happens to be white, then

the PSF is identical to the mechanical focal sweep PSF given in [Nagahara et al., 2008]. If,

on the other hand, the reflectance spectrum is not white, then the sum is weighted by the

magnitude of the spectrum for each wavelength.

3.4 Design and Implementation

The top of Figure 3.3 shows a raytrace of the doublet SFS lens design used in the simulations

of Section 3.5 and the experiments of Section 3.6. The lens was designed using Zemax

Optical Design software. To optimize our lens, we maximized axial chromatic aberration

over the wavelength range 400-700nm, while also minimizing PSF compactness for the center

wavelength averaged over all field positions. We ran an optimization to create an F/4 75mm

focal length lens consisting of two elements, which images onto a 1/3” sensor with 10µm

pixel size. We found that a smaller spot size over a larger field of view can be achieved with

a custom lens design. However, we decided to fit a design with off-the-shelf components

from stock lens suppliers. The SFS lens design consists of an Edmund Optics plano-convex

asphere (part #48184) and a Thorlabs positive meniscus (part #LE1929). The prescription

is shown in Figure 3.4.
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Figure 3.5: The simulated PSF for the lens in Figure 3.3 using a white spectrum. The PSF

is shown as a function of depth and field position.

The bottom of Figure 3.3 shows the simulated PSF as a function of wavelength for our

lens design. The wavelength-dependent PSF is shown to be the chromatic defocus disc

given by Equation A.10, where the disc diameter scales as a function of wavelength. The

largest disc diameter, about 100µm, occurs at 400nm and 700nm. Because the focal length

is not exactly a linear function of wavelength, the PSF with the smallest spot size is at

500nm, not the center wavelength of 550nm. Figure 3.5 shows the simulated PSF of our

lens when using a black and white sensor with a white point source. The depth values were

chosen so that the defocus blur size for the center wavelength is 100µm (the same as the

maximum chromatic defocus) at the two extreme depths. Note that the PSF does not vary

significantly with depth and field positions.

Figure 3.2 shows a side-by-side comparison of our SFS lens with a corrected Cosmicar

lens, also designed for use with a 1/3” sensor. The relative complexities of the two designs

are obvious from their relative sizes. While the Cosmicar lens is capable of imaging at

a smaller F/#, it is significantly larger, heavier, and requires 5-6 elements as opposed to

2. The simplicity of our lens is a direct benefit of the SFS approach. Conventional lens

designs minimize chromatic aberrations by adding a constraint to the lens optimization.

Optimization with additional constraints requires more degrees of freedom, resulting in

designs with the addition of more surfaces, and thus more elements. The SFS lens design

does away with this costly constraint, allowing a reduction in complexity of the final design.
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3.5 Design Verification

To verify our claim that our camera is useful for a wide variety of real-world scenes, we sim-

ulated the PSF for an assortment of reflectance spectra captured with a spectrophotometer.

We downloaded the Munsell database of 1250 different recorded spectra and used Zemax to

simulate the PSF of these spectra when imaged through our design. In our simulations, we

used 50 wavelength samples to simulate the PSF hd(x, y) at d = 1, 2, ...12 depth locations.

Again, the depth values were chosen so that the defocus blur size for the center wavelength

is the same as the maximum chromatic defocus at the two extreme depths.

Figure 3.6 shows the results of our simulations. Figure 6(c) shows a cross section of the

PSF for a few randomly selected spectra as a function of depth. Note that all of the PSFs

have a strong peak, an indication that the PSFs preserve high frequencies. Also note that

the PSF for each spectrum is relatively invariant to depth.

To quantitatively evaluate the quality of the PSFs from the Munsell database, we used

the PSF distance measure D(h1(x, y), h2(x, y)) introduced by Zhou et. al [Zhou et al.,

2011]. This measure defines the similarity of two PSFs as the L2 norm of the Wiener

reconstruction error for an image blurred by one PSF and then deconvolved with the other.

For each Munsell color, we calculate the PSF distance for each hd(x, y) relative to the

PSF at the center depth location. A plot of PSF distance is shown in Figure 6(a) for all

Munsell colors, along with the PSF distance for a corrected lens (displayed as a dotted line).

A flatter profile in this plot indicates less variation of the PSF with depth. The relative

PSF distance for all Munsell colors imaged through the SFS lens is always less than for

a corrected lens, significantly so for most colors. This indicates that the SFS lens always

produces significantly more depth-invariant PSFs relative to a corrected lens.

To further evaluate the performance of our camera relative to existing extended-DOF

designs, we computed the average PSF distance:

A =
1

12

12
∑

d=1

D(hd(x, y), h̃6(x, y)), (3.7)

where h̃6 is the PSF of a white point source at the center depth. The quantity A measures

the average reconstruction error of a spectrum imaged by our SFS camera when a white
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Figure 3.6: Figure 6(a) shows PSF variation as a function of depth for all Munsell colors

when imaged through the SFS lens. The dotted line denotes the PSF variation for all

colors using a corrected lens. Note the flatness of all SFS profiles compared to the corrected

lens, indicating that the PSF varies little with depth for most real-world colors. Figure

6(b) shows the average PSF variation for 95% of the Munsell dataset when imaged through

the SFS camera. The dotted line denotes the average PSF variation for a white spectrum

imaged through the SFS camera. Figure 6(c) shows that PSF shape is relatively invariant

to depth for randomly selected Munsell colors. PSF height is normalized against the center

PSF for each color.
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spectrum is used for deblurring. To evaluate the deblurring quality of the Munsell colors,

we compare the computed A value to that of a white spectrum. Figure 6(b) shows A for

a large number of Munsell colors. As shown in the figure, for a white spectrum, A ≈ .005.

The Munsell colors are sorted in order of ascending A and the bottom 95% percent are

shown. Notice that for 95% of the colors, A ≤ .02. Thus 95% of the Munsell colors have a

variation that is within a factor of 4 of a white spectra. This implies that most naturally

occurring spectra will not introduce significant deblurring artifacts relative to a black and

white scene.

For a corrected lens, A ≈ .5, which is nearly two orders of magnitude greater than for

a white spectrum image through our SFS camera. Figure 3.7 shows that the measured

PSF of a white spectrum source imaged through our SFS camera does indeed demonstrate

significantly greater depth-invariance relative to a corrected lens.

3.6 Experiments

We now show several examples demonstrating the capabilities of our SFS lens. All black

and white SFS images were captured using a Basler A311f VGA 1/3” sensor and the lenses

shown in Figure 3.2. Color SFS images were captured using the same doublet SFS lens

from Figure 3.2 and a Canon 450D sensor. Corrected lens examples were captured using a

Cannon 100mm lens.

Deblurred images were generated using Wiener deconvolution with the PSF measured

from a white point source (i.e. the bottom center PSF shown in Figure 3.7).

3.6.1 Black and White Images

Figure 3.8 demonstrates that even for a scene with a variety of colors, image quality is

superior to that achieved by stopping down a lens. Figure 3.8(a) shows a scene with plastic

toys captured by a F/4 corrected lens. Details in the foreground and background are lost

due to defocus blur. Figure 3.8(b) shows an image captured with the same exposure time

but stopped down to F/16. The depth of field has been increased, but the SNR is greatly

decreased due to weaker signal strength. Figure 3.8(c) shows an image captured with the
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Figure 3.7: The measured PSF using a white point source as a function of distance for both

lenses shown in Figure 3.2 (The corrected lens is stopped down to F/4). For the corrected

lens, the PSF shape is roughly a disc with diameter proportional to defocus. The SFS lens

produces a PSF that is approximately depth invariant.

F/4 SFS lens. Image details are clearly preserved over a larger depth range, but have a

light haze due to the soft tail of the PSF. Figure 3.8(d) shows the results of deblurring

Figure 3.8(c). The haze has been removed to improve contrast, resulting in crisp details

over a larger depth range. The SNR is worse than in Figure 3.8(a), but significantly better

than Figure 3.8(b).

3.6.2 Color Images

We have found that it is possible to use our SFS camera to restore color images using

a simple and inexact approach that produces good visual results. We capture an RGB

image with our SFS lens, then perform a YUV color transformation on the captured image.

The resulting luminance channel closely approximates an image that would be captured

with a black and white sensor. We deblur the luminance channel only, and transfer the

image back to RGB space. The method is inexact because it does not account for color

bleeding in the chrominance channels. However, as discussed in the introduction, blurring

in these channels is much less perceptible to humans, and we have found that the technique

produces satisfactory results for a variety of scenes. Figures 3.10 and 3.11 show details of

color reconstructions, demonstrating the fidelity of our inexact deblurring technique.
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3.7 Limitations

While our technique does work well for a large variety of natural scenes, some naturally

occurring spectra are not sufficiently broadband to produce a large spectral focus sweep

range, and consequently produce a highly depth dependent PSF. The top 5% of Munsell

colors (not shown) in Figure 6(b) have a PSF variation V ≥ .2, some significantly larger. If

our SFS lens is used to photograph a scene that contains narrowband reflectance spectra such

as these, a significant amount of artifacts will be introduced after deblurring. Furthermore,

while our approximate color deblurring method produces visually pleasing results, it does

not correct for blurring in the chrominance channels, and is thus insuitable for many high

quality imaging applications.

3.8 Discussion

The strategy discussed in this chapter was to increase DOF by reducing complexity. While

conventional lenses are designed to minimize chromatic aberrations, the lens introduced

in Section 3.4 was designed to maximize them. These aberrations are exploited for the

purpose of extending depth of field. This approach reduces lens complexity by relaxing

constraints in the lens optimization process. However, it also places restrictions on the

scene being imaged. The technique works poorly when imaging narrow band reflectance

spectra. However, our experiments with reflectance spectra databases and our prototype

camera have indicated that most spectra are sufficiently broadband, and the technique

functions well for a wide variety of scenes. The SFS lens introduced in Section 3.4 was

built using off-the-shelf components, and produced a number of examples that demonstrate

reasonable image quality.

The diffusion coding technique introduced in Chapter 2 and the SFS technique intro-

duced in this chapter represent two different ways of approaching the problem of computa-

tionally extending DOF. The diffusion coding technique makes no assumptions about the

spectral reflectance of objects being imaged. The SFS technique uses a more restrictive

model for the signal. When input signals obey the model, and spectral reflectances are

broadband, the performance of the SFS technique is similar to diffusion coding. Then the
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reduced complexity makes the SFS technique more preferable. However, the added com-

plexity of the diffusion coding technique has a performance advantage associated with it.

Diffusion coding will perform better on average over a larger class of input signals. The

choice between the two techniques really boils down to the cost of increased complexity

relative to the benefit of increased performance. In certain situations, even a small loss in

performance may not be acceptable, and diffusion coding is the obvious choice. In other

cases, cost may be a limiting factor, and the reduced complexity of the SFS technique may

make it a more attractive option.

(a) Captured with a F/4 corrected lens (8ms exposure) (b) Captured with our SFS lens (8ms exposure)

(c) Captured with a F/16 corrected lens (8ms exposure) (d) The image in Figure 8(c) after deblurring

Figure 3.8: Comparison of the SFS camera with a corrected lens. All images are taken with

an 8ms exposure time. Images on the left are taken with a corrected lens and images on

the right are taken with our SFS camera. As shown in Figure 3.8(a), the DOF using a F/4

corrected lens is too narrow. Figure 3.8(c) shows that if we stop down to F/16 we achieve

the desired DOF, but our image is corrupted by noise. When using our SFS camera, we

capture the image in Figure 3.8(b), then recover the extended DOF image shown in Figure

3.8(d), which has significantly less noise. A color thumbnail is included in the bottom-left

of Figure 3.8(a) to show the colors in the scene.
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(a) An image captured with a F/4 corrected lens (b) An image captured with our F/4 SFS lens

Figure 3.9: A scene consisting of three identical resolution targets placed at different depth

planes. Images were captured with an 8ms exposure time and the corrected lens is stopped

down to F/4. The left image was taken with a corrected lens, and the right image was taken

with our SFS camera (after deblurring). The insets show that more detail is visible in the

front and back planes when using the SFS camera.
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(a) An image captured with a F/4 corrected lens (b) An image captured with our F/4 SFS lens

Figure 3.10: A scene consisting of three objects placed at different depths on a table. Both

images were taken with a 16ms exposure time and the corrected lens is stopped down to

F/4. The image on the left was taken with a corrected lens and on the right is a deblurred

version of an image taken with our SFS camera. The insets show that more detail is visible

in the front and back objects when using our Spectral Focal Length camera.
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(a) An image captured with an F/4 corrected lens (b) An image captured with our F/4 SFS lens

Figure 3.11: A scene consisting of three people located at different depths. Both images

were taken with a 16ms exposure time and the corrected lens is stopped down to F/4. The

image on the left was taken with a corrected lens and on the right is a deblurred version

of an image taken with our SFS camera. The insets show that more detail is visible in the

front and back faces when using the SFS camera.
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Chapter 4

Gigapixel Computational Imaging

4.1 Introduction

In Chapters 2 and 3, we discussed the problem of computationally extending DOF. In the

context of EDOF imaging, we face a tradeoff between best and average case performance.

When we try to improve performance over a range of depths, we sacrifice the best possible

performance at a single depth. In Chapter 3 we also saw a tradeoff between performance

and complexity. We showed that a much simpler lens can be used to extend DOF, but at

the price of reduced color performance. In this chapter, we explore this tradeoff further in

the context of high resolution cameras. For these cameras, there is a tradeoff between scale

and resolution. The scale (overall size) of the camera determines how many pixels we can fit

within a given FOV. We can always increase scale to achieve a larger resolution, but there

are costs associated with the size, weight, and power consumption of our cameras. Thus,

it is attractive to look at the relationship between performance and complexity in order to

determine if the cost of increased complexity warrants the resulting gain in performance.

High resolution cameras enable images to be captured with significantly more details

than the human eye can detect, revealing information that was completely imperceptible to

the photographer at the time of capture. These cameras allow humans to explore minute

details of a scene that may have otherwise been overlooked (see Figure 4.2), benefitting a

variety of applications including surveillance, inspection, and forensics. Because the per-

formance of low-level automated vision tasks depend highly on the amount of image detail
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available, greater resolution also helps with computer vision tasks such as object detection,

recognition and tracking. For these reasons and more, there is increasing demand for cam-

eras with ever higher resolution. At present, highly specialized gigapixel imaging systems

are being developed for aerial surveillance [DARPA, 2010].

While CMOS and CCD technologies have improved to the point that imaging sensors

with pixels in the 1µm range have been demonstrated [Fife et al., 2008], it remains a huge

challenge to design and manufacture lenses which have the resolving power to match the

resolution of such a sensor. This is because the number of resolvable points for a lens,

referred to as the Space-Bandwidth Product (SBP) [Goodman, 2005], is fundamentally

limited by geometrical aberrations. Ideally, all lenses would be diffraction limited so that

increasing the scale of a lens while keeping FOV fixed would increase SBP. Unfortunately,

SBP reaches a limit due to geometrical aberrations.

There are two common approaches that are taken to increase SBP in the face of this

fundamental limit. The first is to just accept the loss in resolution and increase sensor size.

As an example, consider the commercially available F/8 500mm focal length Schneider

Apo-Symmar lens. If this lens were diffraction limited, it would be capable of resolving a

gigapixel image on a 5” × 5” sensor. However, because of geometrical aberrations, a sensor

size of nearly 12” × 12” is necessary to resolve a full gigapixel image.

The second approach taken to increase SBP is to increase complexity as a lens is scaled

up. Introducing more optical surfaces increases the degrees of freedom in lens optimiza-

tion, which can be used to reduce geometric aberrations and achieve diffraction limited

performance. Consider the F/4 75mm focal length lens shown in Figure 4.1. The lens is

diffraction limited over a 60◦ FOV so that a gigapixel image can be resolved on a 75mm

× 75mm surface, much smaller than for the Apo-Symmar. The increase in performance

comes at a great cost, however. The design consists of 11 different elements, ranging from

60-100mm in diameter, resulting in a lens that is both expensive to produce and difficult

to align.

We present a new approach to increase SBP - the use of computations to correct for

geometrical aberrations. In conventional lens design, resolution is limited by the spot size

of the lens. For a lens with aberrations, spot size increases linearly with the scale of
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the lens. For a computational imaging system, resolution is related to deblurring error.

We observe, however, that for a lens with spherical aberrations, deblurring error does not

increase linearly with lens scale. We use this remarkable fact to derive a scaling law that

shows that computational imaging can be used to develop cameras with very high resolution

while maintaining low complexity and small size. First, we analytically derive a closed form

expression for the Point Spread Function (PSF) and Optical Transfer Function (OTF) of a

lens with spherical aberration. We then use this expression to derive a closed form solution

for the deblurring error as a function of lens scale. We go on to show how deblurring

performance improves when image priors are introduced.

In Section 4.8 we present an imaging architecture that consists of a large ball lens shared

by an array of small planar sensors coupled with a deblurring step. Due to our monocentric

optical design, field-dependent aberrations are suppressed, and the primary aberrations are

spherical and axial chromatic, which are known to code images in a manner that is invertible

via post-processing [Robinson et al., 2009] [Robinson and Bhakta, 2009] [Guichard et al.,

2009] [Cossairt and Nayar, 2010]. We demonstrate a proof-of-concept gigapixel camera that

is implemented by sequentially scanning a single sensor to emulate an array of tiled sensors.
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0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Spatial Frequency (cycles/mm)

M
T

F

 

 

diffr. limit
 0  fieldo

o

o
15  field
30  field

(b) The MTF of the lens in (a)

Figure 4.1: (a) An F/4 75mm lens design capable of imaging one gigapixel onto a 75 ×
75mm sensor. This lens requires 11 elements to maintain diffraction limited performance

over a 60◦ FOV. (b) The MTF at different field positions on the sensor.
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82,000 pixels

Resistor Dollar Bill 2D Barcode Fingerprint

22
,0

00

Figure 4.2: A 1.7 gigapixel image captured using the implementation shown in Fig-

ure 4.13. The image dimensions are 82,000 × 22,000 pixels, and the scene occupies a 126◦

× 32◦ FOV. From left to right, insets reveal the label of a resistor on a PCB board, the

stippling print pattern on a dollar bill, a miniature 2D barcode pattern, and the fine ridges

of a fingerprint on a remote control. The insets are generated by applying a 60×-200×
digital zoom to the above gigapixel image.

In addition, we present a single element gigapixel camera design with a contiguous FOV.

In Section 4.9.3 we advocate the use of deblurring to remove the effects of aberrations.

However the quality of deblurred images depends on the MTF of the lens, and a diffraction

limited lens always has the best possible performance. Unfortunately, achieving diffraction

limited performance often requires increasing the complexity of the lens, usually by increas-

ing the number of surfaces. Lenses with greater complexity are typically larger, heavier,

more expensive to manufacture, and more difficult to align. We analyze the trade-off be-

tween performance and complexity for the special case of spherical optics.
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4.2 Related Work

4.2.1 Large Format Imaging Systems

A few custom high resolution imaging systems have been developed using large format

lenses. These include systems built with commercial lenses that sequentially scan a large

image plane surface [Ben-Ezra, 2010] [Wang and Heidrich, 2004], as well as a system with a

custom lens that is photographed on film and later converted to a digital image [Gigapixl,

2007]. These are special purpose cameras that are extremely large (FL > 500mm). In

Section 4.8 we show that it is possible to capture images at comparable resolutions with a

much smaller form factor.

4.2.2 Camera Arrays and Multiscale Optics

Camera arrays have been used to capture high resolution images by tiling multiple sensors

paired with a complex lens [Wilburn et al., 2005] [Nomura et al., 2007]. However, a camera

array for gigapixel imaging would be prohibitively large and expensive because it would

require tiling an array of long focal length lenses. A related approach taken by Brady

and Hagen [Brady and Hagen, 2009] is to use a multiscale optical system consisting of a

large single element lens coupled with an array of smaller optical elements, each unique and

coupled with a different sensor. The advantage of this approach is that it is a compact

design that can correct for geometrical aberrations. The disadvantage is that the system

requires a large number of different optical elements, which may be difficult to manufacture

and align.

4.2.3 Monocentric Optics and Curved Sensors

Monocentric optical designs are free of field dependent aberrations because they are com-

pletely symmetric: the image plane and each lens surface lay on concentric spheres. Mono-

centric designs date back to the Sutton Panoramic Lens (1859), and later the Baker Ball

Lens (1942) [Kingslake, 1989]. Luneburg proposed the use of a monocentric lens with vary-

ing index of refraction to correct for aberrations [Luneburg, 1964]. Rim et. al proposed

a small diffraction limited camera consisting of a ball lens and curved sensor [Rim et al.,
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2005]. Krishnan and Nayar proposed the use of a large ball lens and spherical sensor to-

gether with deblurring to create a single viewpoint, fully spherical FOV camera [Krishnan

and Nayar, 2009]. While several researchers have made progress towards developing curved

sensors [Dinyari et al., 2008] [Ko et al., 2008] [Lee and Szema, 2005], the technology is not

yet ready for commercialization.

Recently, Marks and Brady proposed a 7-element large format monocentric lens called

the Gigagon [Marks and Brady, 2010], which the authors suggest using with a large array of

planar sensors. To our knowledge this system has yet to be implemented, but is similar in

architecture to some of the designs we propose 1. Our approach is fundamentally different

in that we show how computations can be used to achieve the desired resolution while

reducing complexity.

4.2.4 Computational Imaging

In the 90’s, Cathey and Dowski proposed a hybrid optical-signal processing system which

uses a cubic phase plate to extend depth of field [Dowski and Cathey, 1995]. Later they

showed that the same element can be used to reduce the complexity of infrared cameras

[Dowski et al., 2000]. Robinson and Stork observed that spherical aberrations are easily

invertible via image processing, and proposed the use of simpler lens designs based on this

principle [Robinson et al., 2009] [Robinson and Bhakta, 2009] [Robinson and Stork, 2009].

Guichard et. al [Guichard et al., 2009] and Cossairt and Nayar [Cossairt and Nayar, 2010]

observed that the effects of axial chromatic aberrations can be inverted using a method that

is inexact, but produces images that look good.

4.3 Diffraction Limited Resolution

Lohmann originally observed that lenses obey certain scaling laws that determine how

resolution increases as a function of lens size [Lohmann, 1989]. Consider a lens with focal

length f , aperture diameter D, and image size ∆x by ∆y. We introduce a scaling factor

1Similar camera designs are also being pursued by the DARPA MOSAIC project, led by David J. Brady.

Terrapixel Imaging, ICCP ’10 Invited Talk, Mar 2010.
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M , which is defined such that M = 1 corresponds to a focal length of f = 1mm. If we

scale the lens by a factor of M , then f ,D, ∆x by ∆y are all scaled by M , but the F/#

and FOV of the lens remain unchanged. If, when we scale the lens, the minimum resolvable

spot size has not also increased by a factor of M , then we have increased the total number

of points that can be resolved. The number of resolvable points for a lens is referred to as

the Space-Bandwidth Product (SBP) [Goodman, 2005]. SBP is a unit-less quantity that

tells us the number of distinct points which can be measured over a given FOV.

The minimum spot diameter of a lens due to diffraction is δd ≈ λF/#, where λ is

the wavelength of light. Since this quantity is independent of lens scale, the SBP for a

diffraction-limited lens is

Rdiff (M) =
M2∆x∆y

(λF/#)2
. (4.1)

The SBP increases quadratically with the scaling factor M (see the red curve in Fig-

ure 4.3).
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Figure 4.3: A plot showing how Space-Bandwidth Product (SBP) increases as a function of

lens size for a perfectly diffraction limited lens (Rdiff ), a lens with geometric aberrations

(Rgeom), and a conventional lens design whose F/# increases with lens size (Rconv).
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4.4 Aberrations and Image Quality

Ideally, all lenses would be diffraction limited, and resolution would scale quadratically with

lens size. Unfortunately, the resolution of most lenses is limited not by diffraction, but by

geometrical aberrations. This is because there is no lens shape that can produce a perfect

focus for all points on the image plane. The best we can do is to reduce aberrations to the

point that their effect is small compared to diffraction.

4.4.1 Aberration Theory

The Optical Path Difference (OPD) generalizes the concept of lens aberrations. The OPD

measures the distance between an ideal focusing wavefront and the actual wavefront prop-

agating through the lens as a function of normalized coordinates in the pupil plane (see

Figure 4.4). For radially symmetric lenses, the generalized OPD is a function of 2-D polar

coordinates {ρ ∈ [−1, 1], φ ∈ [0, π]} in the aperture plane, and the radial coordinate r on

the sensor plane. In optical design, the OPD W (ρ, φ, r) is typically expressed as a Siedel

polynomial, where each term in the polynomial represents a different type of aberration:

W(  )

r
Lens

Image
Plane

Exit
Pupil

Reference
Sphere

Aberrated
Wavefront

Figure 4.4: The OPD W (ρ) of a lens is the path difference between an ideal spherical

wavefront and the aberrated wavefront propagating from the exit pupil of the lens.
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W (ρ, φ, r) =
∑

i,j,k

Wijkr
iρj cosk φ. (4.2)

For instance, W020,W040,W131 represent the amounts of defocus, spherical aberration,

and coma, respectively. For spherical optical systems, the aberrations become independent

of position on the sensor due to the symmetry of the system. In this case, the OPD becomes

W (ρ) =
∑

i,j,k

Wijkρ
j , (4.3)

in which case defocus and spherical aberration become the dominant aberrations. For a

thin lens, the spherical aberration coefficient W040 can be shown to be [Geary, 2002]

W040 =
σI
512

D

F/#3
, (4.4)

where D is again the diameter of the lens aperture, and σI is the structural coefficient (a

constant that depends only on index of refraction and is usually in the range σI = 5− 15).
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(b) The rayfan and PSF of (a)

Figure 4.5: (a) A singlet lens with strong spherical aberrations. (b) The rayfan shows ray

position on the sensor plane as a function of position in the lens aperture. The PSF has

a strong peak because rays are concentrated around the center of the image plane. The

PSF’s support is enclosed in an area of radius α.
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4.4.2 The Aberration Induced PSF

When a lens exhibits aberrations, it can no longer produce a perfect focus. A perfectly

focusing lens produces a Point Spread Function (PSF) that is a delta function, which pro-

duces the sharpest focus possible. Diffraction and geometric aberrations cause the PSF to

deviate from this ideal shape. The OPD can be used to calculate the PSF produced by an

optical system with aberrations. If the aberrations are relatively small, then the effect of

diffraction needs to be considered and Fourier Optics must be used to derive the correct

PSF shape. If the aberrations are large, however, the PSF can be derived using geometric

optics. Since rays propagate perpendicular to the aberrated wavefront, we can use the OPD

to determine where each ray pierces the sensor plane. The transverse ray-aberration curve

r = T (ρ) gives the position of a ray in the sensor coordinates r as a function of coordinates

in the pupil plane ρ. For a point source at infinity, this is given by [Geary, 2002]:

T (ρ) = 2F/#
dW

dρ
. (4.5)

For a lens with spherical aberrations, the transverse aberration curve is given by (see

Figure 4.5(b))

T (ρ) =
σI
64

D

F/#2
ρ3 (4.6)

= αρ3, (4.7)

where α is the spherical aberration coefficient (usually called SA3). Because ρ is given in

normalized coordinates, the full support of the PSF falls within a circle of radius α (see

Figure 4.5(b)). From Equation 4.7 it is clear that if we scale the lens uniformly by a factor

of M (such that the F/# remains constant), α increases by the same factor.

We can think of the ray-aberration curve as an integration curve in a radially symmetric

light field phase space [Levin et al., 2009] [Levin et al., 2009] [Cossairt et al., 2010]. That

is, we can write the light field of a point source propagating through an aberrated lens as

l(r, ρ) =
1

π
⊓ (ρ)

δ(r − T (ρ))

π|r| , (4.8)



CHAPTER 4. GIGAPIXEL COMPUTATIONAL IMAGING 80

where we use a slightly different definition of the tophat function

⊓(ρ) =



















1 if |ρ| < 1

0 otherwise.

(4.9)

The advantage of the light field representation is that the PSF can be found by integrating

over the aperture coordinates. We consider the general monomial OPD W (ρ) = α/(n +

1)ρn+1 which leads to the ray-aberration curve T (ρ) = αρn. We note that taking the

modulus of the radial coordinate inside the ray aberration curve so that T (ρ) = α|ρ|n does

not alter the PSF. The Point Spread Function (PSF) of the lens can then be written as (for

a derivation see Appendix B )

h(r) = π

∫ ∞

−∞
l(r, ρ)|ρ|dρ (4.10)

=
1

πnα2/n
⊓
( r

α

)

|r|2/n−2. (4.11)

The PSF can be shown to be unit normalized so that the integral of the PSF over sensor

coordinates is equal to 1 (see Appendix B). The PSF for a lens with spherical aberrations

is then written as

h(r) =
3

2πα2/3
⊓
( r

α

)

|r|−4/3. (4.12)

4.5 Aberrations and Resolution Scaling Laws

4.5.1 The Classical Aberration Limit to Resolution

For a diffraction limited lens, the SBP increases quadratically with the scaling factor M .

However, the SBP of a lens also depends on the diameter of the blur circle caused by

geometric aberrations. We introduce the variable δg, which represents the geometric spot

size at lens scale M = 1, which we recall corresponds to a focal length of fl = 1mm.

Lohmann argues that the combined blur area when diffraction and aberration are taken
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into account can be expressed as the sum δ2d + δ2g . Since geometric blur increases linearly

with the scaling factor M , the SBP becomes [Lohmann, 1989]

Rgeom(M) =
M2∆x∆y

(λF/#)2 +M2δ2g
. (4.13)

In this case, the SBP plateaus at ∆x∆y/δ2g when the lens is no longer diffraction limited and

Mδg >> λF/# (see the green curve in Figure 4.3). For this reason, lens designers typically

seek to balance lens aberrations in an effort to minimize the blur circle. For example, defocus

can be introduced into a lens with spherical aberrations in order to reduce the geometric blur

circle. From a classical perspective, this strategy increases resolution because it decreases

the spot size of the lens. As we will show in Section 4.6 however, this strategy is not

desirable from a computational imaging perspective because it reduces the conditioning of

the PSF, introducing more deblurring error.

Microscope
F/1 1mm FL

Wide Angle
F/3 27mm FL

SLR Lens
F/5 125mm FL

F/#

Lens Scale (M)

Telephoto
F/10 1000mm FL

Figure 4.6: For conventional lens designs, the F/# typically scales with the cube root of

the focal length in millimeters.
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4.5.2 The Scaling Law for Conventional Lens Design

The geometric blur size can always be decreased by stopping down a lens. As a result

lens designers typically increase the F/# as a lens is scaled up. A general rule of thumb

is that the F/# is increased such that the focal length in mm is approximately equal to

(F/#)3. Many commercially available lenses follow this general trend (see Figure 4.6). For

instance, the 500mm focal length Schneider Apo-Symmar operates at F/8, and 83 ≈ 500.

This heuristic F/# scaling law has a special significance for lenses with spherical aberration.

Then the geometric blur size δg is proportional to the spherical aberration coefficient α, and

from Equation 4.7

α =
σI
64

D

F/#2
=
σI
64

f

F/#3
. (4.14)

Thus, if the F/# increases with the cube root of the focal length, the geometric blur

size δg becomes independent of the scaling factor M . However, the diffraction blur size now

increases as a function of scale so that δd = λM1/3. Then (see the blue curve in Figure 4.3)

the SBP becomes [Lohmann, 1989]

Rconv(M) =
M2∆x∆y

λ2M2/3 + δ2g
. (4.15)

Equation 4.15, derived by Lohmann, is a scaling law that tells us generally how SBP in-

creases with lens size for a conventional lens design. The equation says that when M is

large, the diffraction spot size dominates geometric blur. In this regime, the scaling follows

the behavior:

Rconv(M) ∝M4/3, (4.16)

which overcomes the resolution threshold set by the aberration limit, but does not attain

the ideal M2 behavior of the diffraction limited scaling law.

4.6 Computational Imaging

We now revisit the imaging equation introduced in Chapter 1. To recap, conventional

optical systems are based on the centuries old tradition of modeling optical systems as
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isomorphic mappings between scene radiance and pixel intensity. In a conventional camera,

it is assumed that the brightness measured at a single pixel corresponds directly to the

radiance of a single scene point. In the computational imaging paradigm, the imaging system

can be written as a system of linear equations that relate the unknown signal coefficients f

to the measurements made at each pixel g. In Chapter 1 we discussed image formation in

the absence of noise. Here we alter the image formation equation slightly to include noisy

measurements

g = Hf + η, (4.17)

where g ∈ RM is a vector consisting of the M measured pixel measurements, H is an M

× N matrix, f ∈ RN is a vector of N unknown signal coefficients, and η ∈ RM is a vector

representing the noise measured at each pixel, typically assumed to be gaussian so that

η ∼ N (0, σ2nI). In the context of high resolution imaging, the vector of unknown signal

coefficients f is a discretization of the continuous radiance distribution representing a latent

focused image. We assume that the imaging system is non-compressive so that M = N .

In the analysis that follows, we assume the optical system is shift invariant, in which case

the observation can be modeled as a convolution between the lens PSF and the unknown

scene radiance. Convolution can be expressed compactly in the Fourier domain as the

product between the Fourier transform of the PSF, referred to as the Optical Transfer

Function (OTF), and the Fourier transform of the scene radiance. In our discreet framework,

we denote the PSF by the vector h and the OTF by the vector ĥ = Fh, where F is the Fourier

matrix. Under the assumption of periodic boundary conditions, the matrix A becomes a

cyclic matrix such that Hi,j−i = hi with the special property that it can be written as

H = F̄ΛF, where Λ is a diagonal matrix and Λii = ĥi, and the ¯ operator denotes complex

conjugate. There is a slight abuse of notation here, because, for a 2D blur kernel, H is

actually block-cyclic and diagonalized by the 2D Fourier matrix F2D = F
⊗

F, where
⊗

is

the Kronecker product.

The image formation equation can be written as a sparse set of linear equations in the

Fourier domain:
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ĝ = Λf̂ + η̂, (4.18)

where the ˆ operator denotes multiplication with the Fourier matrix F.

4.6.1 Image Deblurring

In the conventional imaging paradigm, pixel measurements correspond directly to scene

radiance values. In the computational imaging paradigm, the unknown image f is blurred

by the matrix H. To deblur the captured image g we must invert Equation 4.17. If the

PSF is well conditioned, then the OTF contains no zero crossings and the matrix H is full

rank and invertible, and we can estimate the unknown radiance f∗ as

f̂∗ = Λ−1ĝ. (4.19)

Equation 4.19 is a sparse set of linear equations such that the estimate f∗ is found simply

by taking the ratio of Fourier coefficients

f̂∗i = ĝi/ĥi. (4.20)

The final estimate can then be found by simply taking an inverse Fourier Transform. Unfor-

tunately, we cannot recover the unknown image exactly because the original measurements

were corrupted by noise. In order to quantify the quality of the deblurred image, we use

the mean squared deblurring error σ2d as a metric, which is defined as the expected mean

squared difference between the deblurred image f∗ and the ground truth image f . σ2d mea-

sures the variance of noise artifacts induced by the deblurring process. In our shift invariant

system, this can be written as

σ2d =
1

N
E[‖f∗ − f‖2] (4.21)

=
σ2n
N

N
∑

i=1

1

‖ĥi‖2
, (4.22)
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where E denotes taking the expectation with respect to the noise η. Equation 4.22 says

that, when naive deblurring is applied, the deblurring error is a product between the noise

variance and the average squared reciprocal of the OTF.

4.6.2 Spherical Aberrations and Deblurring

In Section 4.4.2 showed that the spherical aberration coefficient α scales linearly with lens

size, and we derived the analytic expression for the PSF of a lens with spherical aberrations,

given by Equation 4.12. From this expression, we can derive the OTF of the lens. As

discussed in Chapter 2, for a radially symmetric PSF h(r), the OTF ĥ(q) can be found by

applying the zero order Hankel transform:

ĥ(q) = 2π

∫ ∞

0
J0(qr)h(r)rdr, (4.23)

where J0(r) is the zero-order Bessel function of the first kind. For the PSF given by Equation

4.12, the OTF becomes

0 50 100

1
OTF Comparison

Zemax

Analytic

= 5um

= 13um

= 100um

Spatial Frequency (mm  )-1

O
T

F

Figure 4.7: A comparison of the OTF for a lens with spherical aberration calculated

using Zemax (the blue curves) and using our analytic formula (red curves). The OTF

is calculated at various lens scales corresponding to spherical aberration coefficients of

α = {5µm, 13µm, 100µm}
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ĥ(q) =
2

α2/3

∫ α

0
J0(qr)r

−1/3dr (4.24)

= 1F2({
1

3
}, {1, 4

3
},−α

2q2

4
), (4.25)

where 1F2(a; b, c; d) is the Generalized Hypergeometric Function [Slater, 1966]. Figure 4.7

shows a comparison between the OTF calculated analytically using Equation 4.24 and the

OTF calculated numerically using the Geometric MTF feature in Zemax Optical Design

Software [Zemax, 2010]. The OTF is calculated at a variety of lens scales corresponding

to spherical aberration coefficients α = {5µm, 13µm, 100µm}, and the results are highly

consistent in all cases.

With an equation for the OTF, it is possible to derive an analytic expression for the de-

blurring error. In the continuous domain, the deblurring error from Equation 4.22 becomes

σ2d =
2σ2n
Ω2

∫ Ω

0

1

‖ĥ(q)‖2
qdq, (4.26)

where the signal is assumed to be bandlimited by the nyquist frequency Ω. Unfortunately,

there is no closed form solution for the expression in Equation 4.26 after substituting the

Hypergeometric function, so we instead approximate the OTF using the following equation:

ĥ(q) =
2

α2/3

∫ ∞

0
J0(qr)r

−1/3dr (4.27)

=
2Γ(7/6)√
πα2/3

, (4.28)

where Γ is the gamma function. Equation 4.27 essentially approximates the PSF as having

infinite support, which is accurate for large amounts of spherical aberration, but decreases

in accuracy as the spherical aberration approaches zero. Figure 4.8 shows a comparison of

the OTF calculated using using our analytic formula (red curves) and using the approxi-

mation for the OTF given by Equation 4.27. The OTF is calculated at various lens scales

corresponding to spherical aberration coefficients of α = {20µm, 50µm, 200µm}. As the

amount of spherical aberrations increase, the approximation increases in accuracy.
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Substituting the approximate MTF from Equation 4.27 into the expression in Equation

4.26 gives us an analytic expression for the deblurring error:

σd = σn

√

3π

2

(Ωα)2/3

2Γ(7/6)
. (4.29)

Since we know from Equation 4.7 that scaling a lens by a factor of M also scales α by the

same factor, Equation 4.29 gives us the relation

σd = kσnM
2/3 (4.30)

where k is a constant. Equation 4.30 expresses a remarkable fact: for lenses with spherical

aberrations, while the size of the PSF increases linearly with lens scale M , the deblurring

error increases sub-linearly. While Equation 4.30 is based on an approximation of the

geometric OTF, it closely approximates the deblurring error calculated numerically using

the OTF from Equation 4.24 (see Figure 4.9).

0 100
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0 100
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= 20um = 50um = 200um
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Figure 4.8: A comparison of the OTF for a lens with spherical aberration calculated using

using our analytic formula (red curves) and using the approximation for the OTF given by

Equation 4.27. The OTF is calculated at various lens scales corresponding to spherical aber-

ration coefficients of α = {20µm, 50µm, 200µm}. As the amount of spherical aberrations

increase, the approximation increases in accuracy.
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Figure 4.9: A comparison of the RMS deblurring error σd as a function of the spherical

aberrations coefficient (α) with sensor noise σn = .01 and nyquist frequency Ω = 100mm−1.

The red curve shows the error computed numerically using Equations 4.24 and 4.26. The

green curve is calculated using the closed form expression for deblurring error given in Equa-

tion 4.29. The green curve closely approximates the green curve, with accuracy increasing

as α increases.

4.7 A Scaling Law for Computational Imaging

4.7.1 Deblurring Error vs. Resolution

For the scaling laws given in Section 4.5, it is assumed that the minimum resolvable spot

size is equal to the blur size due to geometric aberrations, δg. For a computational imaging

system (i.e., with deblurring), the resolution is given by the pixel size ξ, and SBP does not

depend directly on the geometric blur radius δg. A more pertinent quantity for measuring

image quality is SNR. In the absence of any noise we can theoretically increase SBP by

decreasing pixel size until we have reached the diffraction limit. In order to provide a fair

comparison between any two computational imaging systems, we must fix the SNR.

By fixing SNR, we establish a relationship between the deblurring error and pixel size.
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To show this, we express deblurring error as a function of lens scale M . Assuming the

deblurring error is proportional to sensor noise, we can write

σd = σns(M), (4.31)

where s(M) represents the scale-dependent deblurring factors. In order to force the SNR

to remain constant across lens scale, we must adjust the sensor noise appropriately.

We now relate pixel size ξ to sensor noise σn. Here we assume that pixels receive

sufficient light such that poisson noise dominates. Then the measurement noise can be

well approximated by additive gaussian noise with variance proportional to the mean signal

intensity [Chakrabarti et al., 2010]. Scaling ξ by a factor of M increases the pixel’s area by

a factor of M2. For a fully saturated pixel, assuming a shot noise limited sensor, this will

increase the sensor’s full well capacity byM2 and decrease noise by a factor of 1/M relative

to the signal. The sensor noise is then inversely proportional to pixel size so that

ξ(M) ∝ 1

σn(M)
. (4.32)

Equation 4.32 says that in order to make SNR scale independent, the pixel size should be

increased as a function of M to exactly cancel out scale-dependent deblurring factors. The

number of resolvable points for a computational imaging systems is then

Rcomp(M) =
M2∆x∆y

(λF/#)2 + ξ(M)2
. (4.33)

4.7.2 An Analytic Scaling Law

Using the expression for deblurring error for a lens with spherical aberrations given by

Equation 4.30, we see that in order to produce a SNR that is independent of lens scale, the

pixel size should be scaled according to the relation ξ ∝M2/3. Plugging this into Equation

4.33 gives an analytic scaling law for computational imaging systems:

Rana(M) =
M2∆x∆y

(λF/#)2 + k22M
4/3

(4.34)
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where we have gathered proportionality constants in to k2. For large M , the scaling law

has the behavior

Rana(M) ∝M2/3. (4.35)

As with conventional lens design curve Rconv, Equation 4.34 gives a scaling law that

breaks the resolution threshold imposed by the aberrations limit (see the magenta curve

in Figure 4.11). However, the analytic scaling law does not behave as close to the ideal

diffraction limited scaling law as the Rconv curve. At the same time, the Rconv curve

assumes that F/# reduces and more light is sacrificed as scale increases, while the Rana

curve does not make this assumption.

4.7.3 Image Priors for Improved Performance

In the previous section we showed analytically that, when a computational approach is

taken, the resolution of a lens with spherical aberrations breaks the classical limit that

results when considering geometrical spot size alone. The Rana curve given in Equation

4.34, however, does not increase as rapidly with lens scale as does Lohmann’s scaling law

for conventional lens designs. We now show that the scaling behavior of computational

imaging systems surpasses that of conventional lens designs when image priors are taken

into account.

In Section 4.6.1 we used Equation 4.19 to form an estimate of our unknown image. This

solution can be seen to be equivalent to the solution found by maximizing the likelihood for

the probability distribution [Bertero and Boccacci, 1998]

h(ĝ|̂f) = exp ‖ĝ − Λf̂‖2. (4.36)

The maximum likelihood solution minimizes the probability of error in the estimate when no

information about the the prior distribution h(f̂ ) is available a priori. In our case however,

some information about h(f̂ ) is known ahead of time since the unknown quantity f̂ belongs

to the class of natural images. To make a solution to the estimation problem analytically
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tractable, we assume a linear distribution on Fourier coefficients of natural images taking

the form h(f̂) = exp ‖B f̂‖2, where B is a diagonal matrix. We define the vector of Fourier

coefficients b̂ such that Bii = b̂i. Given a prior distribution, the maximum a posteriori

solution minimizes the probability of error in the estimate. The estimate then becomes

f̂∗ = argmax
f

h(ĝ|̂f )h(f̂ ) (4.37)

= argmax
f

(‖ĝ − Λf̂‖2 + ‖B f̂‖2) (4.38)

= (Λ2 +B2)−1Λtĝ, (4.39)

which can be written as the set of linear equations

f̂∗i =
¯̂
hi

‖ĥi‖2 + ‖b̂i‖2
ĝi, (4.40)

We define the average power spectrum â such that âi = E[‖f̂i‖2], where the expectation

is taken with respect to the set of natural images. Then, as Zhou and Nayar showed, the

optimal vector b̂ is such that b̂i = σ2n/âi, and the squared deblurring error becomes [Zhou

and Nayar, 2009]

σ2d = σ2n

N
∑

i=1

1

‖ĥi‖2 + σ2n/âi
. (4.41)

Figure 4.10 shows the deblurring error σd calculated using Equations 4.24 and 4.41. σd

is shown as a function of spherical aberration α for a variety of sensor noise levels in the

range σn = [.002, .1]. A polynomial is fit to each curve, and the best fit is found to be in

the range σd ∝ α1/3.4 to σd ∝ α1/4.2. We approximate the deblurring error as

σd ∝ σnα
1/3.8. (4.42)

∝ σnM
1/3.8. (4.43)

In fact, this estimate is slightly pessimistic, as the deblurring error also increases sub-linearly

with σn as well as α. From Equations 4.43 and 4.33, we conclude that when image priors
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Figure 4.10: RMS deblurring error as a function of spherical aberration (α). As α increases,

both the PSF size and the deblurring error increase. While the size of the PSF increases

linearly with α, deblurring error increases with α1/3.8. In this experiment, the nyquist

frequency Ω = 250mm−1.

are used for deblurring, the resolution of a computational imaging system obeys the scaling

law given by (see the cyan curve in Figure 4.11)

Rprior(M) =
M2∆x∆y

(λF/#)2 + k23M
2/3.8

, (4.44)

where again we have gathered proportionality constants into k3. While the analytic scaling

law curve Rana does not scale as quickly as the conventional lens design curve Rconv, the

curve Rprior scales more quickly. From this we conclude that in building a camera at a

desired resolution, when image priors are taken into account, a computational camera can

be built at a smaller scale than a conventional lens design. Again, the Rconv curve assumes

that F/# reduces and more light is sacrificed as scale increases, while the Rprior curve does

not make this assumption.
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Figure 4.11: Scaling laws for computational imaging systems with spherical aberrations.

The Rana, which was analytically derived, shows an improvement upon the aberration

limited curve Rgeom, without requiring F/# to increase with M . Performance is further

improved when natural image priors are taken into account, as the Rprior curve shows. The

Rprior curve improves upon the conventional lens design curve Rconv, also without requiring

F/# to increase with M .

4.8 Gigapixel Computational Cameras

According to Equation 4.44, a computational imaging approach can enable a greater reso-

lution to be achieved with a smaller camera size. To demonstrate this principle, we show

results from a proof of concept camera that utilize a very simple optical element. By using

a large ball lens, an array of planar sensors, and deconvolution as a post processing step,

we are able to capture gigapixel images with a very compact camera.

The key to our architecture lies in the size of the sensors relative to the ball lens. To-

gether, a ball lens and spherical image plane produce a camera with perfect radial symmetry.

We approximate a spherical image plane with a tessellated regular polyhedron, such as an

icosahedron. A planar sensor is placed on each surface of the polyhedron. Note that because

sensors are typically rectangular, a different polyhedron, such as a truncated icosahedron,

may provide more optimal sensor packing. Relatively small sensors are used so that each
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sensor occupies a small FOV and the image plane closely approximates the spherical sur-

face. As a result, our camera produces a PSF that is not completely spatially invariant, but

comes within a close approximation.

4.8.1 A Proof-of-Concept Gigapixel Camera

The first system we demonstrate consists solely of a ball lens and an array of planar sensors.

We use a 100mm acrylic ball lens and a 5 megapixel 1/2.5” Lu575 sensor from Lumenera

[Lumenera, 2010] (see Figure 4.12(a)). We emulate an image captured by multiple sensors

by sequentially scanning the image plane using a pan/tilt motor. With this camera, a 1

gigapixel image can be generated over a roughly 60ox40o FOV by tiling 14x14 sensors onto

a 75mmx50mm image surface. When acquiring images with the pan/tilt unit, we allow a

small overlap between adjacent images.

The PSF as a function of field position on each individual sensor is shown in Fig-

ure 4.12(b). Note that the PSF shape remains fairly consistent across the FOV of each

sensor. The MTF (shown in in Figure 4.12(c)) avoids zero crossings up to the Nyquist

frequency of the sensor. The plots were generated using Zemax Optical Design Software

[Zemax, 2010].

An implementation of this design is shown in Figure 4.13. Figures 4.2 , 4.14, and 4.16

show two gigapixel images captured with this system. Note the remarkable level of detail

captured in each of the photographs. Zooming in to Figure 4.2 reveals the label of a resistor

on a PCB board, the stippling print pattern on a dollar bill, a miniature 2D barcode pattern,

and the extremely fine ridges of a fingerprint. Closeups in Figure 4.14 reveal fine details

in a watch, an eye, a resolution chart, and individual strands of hair. Closeups in Figure

4.16 reveal details that are completely invisible in the zoomed out panorama, including a

sailboat, a sign advertising apartments for sale, the Empire State Building, and cars and

trucks driving on a bridge

4.8.1.1 Color

Because our cameras do not include any color correcting elements, they suffer from ax-

ial chromatic aberrations. For our 100mm diameter ball lens that we use, the chromatic
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(a) An F/4 75mm focal length ball lens system.
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Figure 4.12: (a) Our single element gigapixel camera, which consists solely of a ball lens with

an aperture stop surrounded by an array of planar sensors. (b) Because each sensor occupies

a small FOV, the PSF is nearly invariant to field position on the sensor. (c) The PSF is

easily invertible because the MTF avoids zero crossings and preserves high frequencies.

focus shift is about 1.5mm over the visible wavelength range. However, most of the im-

age blur caused by chromatic focus shift is in the chrominance channel of captured images

[Guichard et al., 2009] [Cossairt and Nayar, 2010]. Since humans are less sensitive to blur

in chrominance channels, axial chromatic aberrations do not cause a significant degrada-

tion in perceived image quality. We use the deblurring technique from Cossairt and Nayar

[Cossairt and Nayar, 2010], which is inexact but produces images that look good.
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Figure 4.13: A system used to verify the performance of the design shown in Figure 4.12(a).

An aperture is placed on the surface of the ball lens. A gigapixel image is captured by

sequentially translating a single 1/2.5”, 5 megapixel sensor with a pan/tilt motor. A final

implementation would require a large array of sensors with no dead space in between them.

4.8.1.2 Post Processing

The post processing for captured images follows several steps. First, a transformation from

RGB to YUV color space is applied. Next, Wiener deconvolution is applied to the luminance

channel only, and the image is transformed back to RGB color space. A noise reduction

algorithm is then applied to suppress deblurring artifacts. We found the BM3D algorithm

[Dabov et al., 2006] to produce the best results. Finally, the set of captured images are

stitched to obtain a high resolution image using the Microsoft Image Composite Editor

[ICE, 2010].

4.8.2 A Single Element Design

The design in Figure 4.12(a) is extremely compact, but impractical because adjacent sensors

must be packed without any dead space in between them. The size of this system is limited

by the package size of the sensor relative to the active sensor area. Sensors with a package

size that is only 1.5x larger than the active sensor area are currently commercially available.

With these sensors, it is possible to build a gigapixel camera that uses only a single optical
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Figure 4.14: A 1.6 gigapixel image captured using the implementation shown in Fig-

ure 4.13. The image dimensions are 65,000 × 25,000 pixels, and the scene occupies a 104◦

× 40◦ FOV. From left to right, the insets reveal fine details in a watch, an eye, a resolution

chart, and individual strands of hair.

element, as shown in Figure 4.15(a). In this design, each sensor is coupled with a smaller

acrylic relay lens that decreases the focal length of the larger acrylic ball lens. The relay

lenses share a surface with the ball lens, which means that it is possible to combine the

entire optical system into a single element that may be manufactured by molding a single

material, drastically simplifying the complexity (and hence alignment) of the system.

4.8.3 Capturing the Complete Sphere

A great advantage of using a ball lens is that, because it has perfect radial symmetry, a near

hemispherical FOV can be captured. In fact, it can even be used to capture the complete

sphere, as shown in Figure 4.15(b). This design is similar to the one in Figure 4.15(a)
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with a large gap between adjacent lens/sensor pairs. Light passes through the gaps on one

hemisphere, forming an image on a sensor located on the opposite hemisphere. As a result,

the sensors cover the complete 2π FOV at the cost of losing roughly half the incident light.

4.9 Discussion

4.9.1 Limitations of Scaling Laws

In Sections 4.5 and 4.7, we derived scaling laws which express the the general scaling

behavior of resolution versus lens scale M , with special attention paid to how the behavior

for increasingly large values of M . However, because we have chosen to speak in general

terms about the scaling behavior, we have not given attention to how resolution behaves for

smaller values of M , which may result in different behavior. For instance, when M is large,

Sensor
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Lens
Array

(a) A single element design

Ball Lens

Lens Array

Sensor Array
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100 m
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(b) A 4π FOV design

Figure 4.15: (a) A single element design for a gigapixel camera. Each sensor is coupled

with a lens that decreases focal distance, allowing FOV to overlap between adjacent sensors.

(b) A design for a gigapixel camera with a 2π radian FOV. The design is similar to the

implementation in Figure 4.15(a) with a large gap between adjacent lens/sensor pairs. Light

passes through the gaps on one hemisphere, forming an image on a sensor located on the

opposite hemisphere.
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Figure 4.16: A 1.4 gigapixel image captured using the implementation shown in Fig-

ure 4.13. The image dimensions are 110,000 × 22,000 pixels, and the scene occupies a 170◦

× 20◦ FOV. From left to right, insets reveal a sailboat, a sign advertising apartments for

sale, the Empire State Building, and cars and trucks driving on a bridge.

conventional lens designs outperform computational imaging without priors, as indicated

by the Rconv and Rana curves. However, for small M , Rana may actually be greater than

Rconv, depending on the exact values of the proportionality constant k1 and the amount of

spherical aberration δg. These exact values will vary depending on the specific lens design

and sensor characteristics, but the aggregate behavior for large values of M will will remain

consistent across all scenarios. In this way, the scaling laws encompass the gross behavior

of lenses and sensors, but do not always lend themselves to a direct comparison between

specific designs.

4.9.2 On Computational Imaging and Scaling Laws

The original scaling laws derived by Lohmann are pleasingly simple in the sense that they

keep the problem domain constrained to a single variable: the scale parameter M . In some

sense, introducing computational imaging made the problem more complicated because it

introduced a new variable in the form of SNR. Looking at the problem in a general way,

the resolution scaling behavior of different imaging systems can vary both as a function of
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lens scale and SNR. While Lohmann made no mention of SNR in his original analysis, there

was an implicit relationship between SNR and resolution that was unstated. For exam-

ple, consider the expression for the scaling behavior of lenses in the presence of geometric

aberrations given by Equation 4.13. We recall that, for large M , resolution plateaus at

∆x∆y/δg. However, if we choose to match pixel area to blur area, then pixel size increases

linearly with M . Thus, according to the arguments in Section 4.7, if we continue to scale a

lens beyond the aberration limit, resolution does not increase, while SNR increases linearly

withM . On the other hand, for diffraction limited lenses, pixel size, and thus SNR, remains

constant while resolution scales quadratically with lens scale. This leads to an interesting

observation about the tradeoff between resolution and SNR. In some sense, these two exam-

ples are opposite extremes in a two-dimensional design space. When geometric aberrations

are present, resolution becomes fixed but SNR can increase, while for diffraction limited

lenses, SNR becomes fixed but resolution can increase.

This brings us to the scaling laws for conventional lens design and computational imag-

ing. The conventional lens design curve, Rconv, is derived assuming that both F/# and pixel

size increase with M1/3. In the photon limited noise regime, SNR is proportional to pixel

size ξ, and inversely proportional to F/#. Thus, while the Rconv curve is derived assuming

that more light is sacrificed as lens scale increases, the amount of photons collected per

pixel remains fixed, and thus so does SNR. Similarly, in the computational imaging regime,

we ask what pixel scaling behavior will produce a deblurring error, and hence SNR, that is

independent of lens scale.

The scaling laws for computational imaging and conventional lens design represent the

behavior of two competing techniques that are trying to achieve the same goal: maximizing

resolution scaling behavior while fixing SNR. Neither technique achieves the ideal scaling

performance of diffraction limited lenses. In effect, both techniques are complexity reducing

measures, since they aim to maximize performance without introducing the added optical

elements required to reduce aberrations below the diffraction limit. This brings us to a

third axis in our design space: lens complexity. As we scale a diffraction limited lens, SNR

remains fixed and resolution reaches the maximum scaling potential, however lens complex-

ity must also increase in an effort to combat greater amounts of geometrical aberrations. In
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Figure 4.17: The MTF for spherical optical systems with varying amounts of complexity.

Complexity is measured as the number of optical surfaces, which increases from left to right

as 1 to 6 surfaces. The six surface design is the Gigagon lens designed by Marks and Brady.

Each design is a F/2.8 280mm FL lens optimized using Zemax. As the number of surfaces

increases, the MTF improves, improving the SNR as well.

contrast, for the computational imaging and conventional lens scaling laws, both SNR and

lens complexity remain fixed, but the maximum scaling potential is not achieved.

In an ideal setting, we would like to maximize resolution and SNR while minimizing

lens scale and complexity. This cannot be achieved in practice, however, and the best that

can be done is to develop a merit function that weighs these measures in terms of their

relative importance on an application dependent basis. Lens optimization based on this

merit function then gives the design which results in the best performance for this specific

application.

4.9.3 The Performance vs. Complexity Trade-off

According to Equation 4.44, with the aid of computations, the resolution of a lens with

spherical aberrations will, in general, scale more quickly than for a conventional lens de-

sign. However, a lens which requires deblurring will have a smaller SNR than a diffraction

limited lens of the same scale. For the designs proposed in Section 4.8, we have chosen

designs that favor simplicity, and as a consequence, also result in a lower SNR. Any com-
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putational imaging system poses an inherent trade-off between complexity and SNR. In

practice, exploring this trade-off requires a carefully designed measure for complexity.

A good complexity measure must take into account many different factors: the number

of surfaces, the degree polynomial of each surface, etc. While it is difficult to develop a

general measure for complexity that applies to all lens designs, the problem becomes much

simpler when we consider only concentric spherical optical elements. In this case, complexity

can simply be quantified as the number of surfaces used in the design.

To explore the tradeoff between complexity and SNR for the special case of spherical

optics, we created six spherical optics designs, ranging in complexity from 1 shell to 6

shells. The six designs were created in an effort to analyze how the best case performance

of a computational imaging system scales as a function of lens complexity. Shells 1-5 were

optimized with Zemax using a custom optimization procedure that minimizes the deblurring
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Figure 4.18: SNR vs. complexity for the lens designs shown in Figure 4.18, assuming

a computational approach is taken. SNR increases by a factor of 19 when complexity

increases from 1 shell to 2 shells, while SNR only increases by a factor of 4 when complexity

increases from 2 shells to 6 shells.
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error. The six shell design shown is the Gigagon lens designed by Marks and Brady [Marks

and Brady, 2010]. The six designs and their relative performance are shown in Figure 4.17.

From the MTF plots shown at the bottom of the figure, it can be seen that the six shell

design performs near diffraction limited, and the MTF steadily decreases with decreasing

complexity.

Figure 4.18 shows how, rather than favoring simplicity, an optimal design may consist

of more elements than the designs discussed previously in this chapter. It appears that,

for the special case of spherical optics, there is a law of diminishing returns when it comes

to improving performance by means of increasing complexity. In particular, we note that

SNR increases by a factor of 19 when complexity increases from 1 shell to 2 shells, while

SNR only increases by a factor of 4 when complexity increases from 2 shells to 6 shells.

Taking this behavior in to account, an optimal design may be found by balancing lens

scale and complexity. Such a design would have minimum scale and complexity for a given

resolution, and a fixed scale/complexity ratio. Whether or not general lens designs also have

similar complexity vs. performance behavior is an open question that is currently under

investigation.

4.10 Conclusion

In this chapter, we have given a comprehensive analysis on the tradeoff between the scale

and resolution of a camera. We extended Lohmann’s analysis to include the resolution

scaling behavior of computational imaging systems, with special attention paid to lenses that

exhibit spherical aberrations. Closed form expressions for the PSF, OTF, and deblurring

error of lenses which exhibit spherical aberrations have been derived. In addition, we have

shown that, when image priors are taken into consideration, computational imaging systems

exhibit superior scaling performance with respect to conventional lens designs.

Our analysis on the scaling behavior of lenses brought us back to the tradeoff between

performance and complexity for computational imaging systems. We explored the design

of gigapixel computational imaging systems based on spherical optical elements, which

primarily exhibit spherical aberrations. A proof-of-concept system that emulates a spherical
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lens surrounded by an array of planar sensors was demonstrated. Several examples were

shown which evidence promising image quality with a compact camera that consists of

only a single optical element. However, the performance of the camera can be improved

by increasing lens complexity. We explored the tradeoff between performance and lens

complexity, providing a complete exploration of the design space of resolution, SNR, lens

scale and complexity for the special case of spherical optics. In the end we see that the

tradeoff between scale and resolution is closely related to the tradeoff between performance

and complexity.

This chapter concludes our discussion on the tradeoffs of computational imaging sys-

tems. In the last three chapters we have seen that there are a number of tradeoffs that exist

for cameras that computationally extend DOF and increase resolution. However, these are

only a few of the functionalities offered by computational imaging. In the next chapter we

return to a general discussion on computational imaging, and focus exclusively on the topic

of performance. We return to a comparison between computational and conventional tech-

niques, and ask when computational imaging techniques provide a performance advantage.
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Chapter 5

On the Limits of Computational

Imaging

5.1 Introduction

In Chapters 2, 3, and 4, we discussed a number of tradeoffs that for computational imaging

systems designed to extend DOF and increase optical resolution. In Chapter 4 we gave a

thorough performance comparison between conventional and computational imaging sys-

tems. Here the message was clear: a computational approach always reduces performance,

but with the benefit of also reducing complexity. We compared performance for the EDOF

techniques introduced in Chapters 2 and 3, but the analysis was incomplete. We did not

provide any conclusive answers about how the performance of an EDOF camera compares

to stopping down a lens.

In this chapter we revisit the topic of performance for EDOF, and more generally,

any imaging system that maps a linear combination of signal coefficients to each pixel

measurement. We refer to this many-to-one mapping as a coding or multiplexing of the

signal, and the process of inverting the mapping as decoding the signal. As we discussed in

Chapter 1, coding is a very attractive option in many scenarios because it can be used in

intelligent ways to increase the efficiency of the optical system, and increase the Signal-to-

Noise Ratio (SNR) of captured images. Unless the coding is perfectly conditioned, however,

the process of decoding amplifies noise, and to determine the true benefit of a coding
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technique we must weigh the benefit of increased efficiency vs. the disadvantage of increased

noise. The purpose of this chapter is to explore the relationship between efficiency in the

capture process and the conditioning of the coding process.

We have seen a variety of coding applications in the computer vision and optics commu-

nities dating back to early work on spectrometry and X-Ray astronomy in the 70’s [Skinner,

1988] [Caroli et al., 1987]. Coding techniques have been employed to capture various slices

of the plenoptic function, and to measure various properties of light transport. Coded aper-

ture Gamma Ray telescopes use MURA codes to capture images without refractive optics

[Gottesman and Fenimore, 1989] [Villela et al., 1995]. Mask-based Hadamard multiplex-

ing has been used for spectrometers that capture a spectrum at a single spatial location

[Harwit and Sloane, 1979], as well as for imaging spectrometers that capture irradiance as

a function of both wavelength and 2D spatial locations [Hanley et al., 1999]. Color Filter

Arrays (CFAs) that multiplex wavelength data have been proposed to capture three color

images with more efficiency [Baer et al., 1999] [Ihrke et al., 2010]. Masks placed either in

the lens aperture, or near the sensor, have been used to capture light fields [Veeraraghavan

et al., 2007] [Lanman et al., 2008] [Liang et al., 2008]. Hadamard codes, as well as newly

optimized codes, have been used to capture the appearance of objects under different light-

ing conditions [Schechner et al., 2003] [Schechner et al., 2007] [Ratner and Schechner, 2007]

[Ratner et al., 2007]. Coded aperture masks have been used to deblur images that exhibit

defocus blur [Levin et al., 2007] [Veeraraghavan et al., 2007] [Zhou and Nayar, 2009] [Zhou

et al., 2011]. Temporal shuttering has been used to remove the effect of motion blur [Raskar

et al., 2006]. We refer to this family of coding methods as multiplexing methods, and we

analyze the performance limits of this family in Section 5.2.

For nearly all examples of coding, there is a corresponding technique that measures the

signal directly without the need for any decoding, which we refer to as conventional tech-

niques. For example, a Bayer filter measures RGB colors directly, but less efficiently than

a mask with with Cyan, Magenta and Yellow (CMY) filters. Narrowband spectral filters

can be used in place of a Hadamard spectrometer. A pinhole array can be used in place

of mask-based light field multiplexing techniques. A stopped down aperture can be used

in place of a coded aperture, and so on. These conventional techniques are an important
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baseline for comparing performance. Multiplexing techniques offer an advantage in terms of

increased optical efficiency, but whether or not they offer a performance advantage relative

to conventional techniques depends on noise characteristics, which in turn depends on light-

ing conditions. In this chapter, we derive limits on the best possible performance advantage

that can be achieved. We relate the performance advantage to different lighting scenarios,

and we discover that there is a relatively small set of scenarios where an advantage can be

achieved.

Multiplexing methods sacrifice some amount of optical efficiency by masking light in

either wavelength, spatial or temporal dimensions. There are a number of coding tech-

niques that do not sacrifice light. Superresolution techniques code high resolution data

within multiple images with sub-pixel shifts by using either sensor motion or arrays of par-

allel imaging systems [Ben-Ezra et al., 2004] [Ben-Ezra et al., 2005] [Tanida et al., 2000]

[Tanida et al., 2001]. These codes, however, become very poorly conditioned when trying

to increase resolution by more than a factor of 2. We have already discussed a number of

well conditioned codes that extend DOF without sacrificing light [Chi and George, 2001]

[E. R. Dowski and Cathey, 1995] [Ojeda-Castaneda et al., 2005] [Levin et al., 2009] [Häusler,

1972] [Nagahara et al., 2008] [Cossairt et al., 2010] [Cossairt and Nayar, 2010] [Guichard et

al., 2009]. These techniques produce shift invariant blur that is independent of depth, and

can be recovered via deconvolution. There are also analogous methods that create motion

invariant motion blur that can be removed without sacrificing light [Levin et al., 2008] [Cho

et al., 2010]. Both EDOF and motion invariant techniques aim to produce blur that is

invariant over some domain (in this case either depth or motion). We discuss methods of

coding for invariance in Section 5.3.

5.2 Multiplexing Methods

We return to the general form of multiplexing introduced in Chapter 1. As we did in this

chapter, we use an image formation equation that relates a vector of signal coefficients to a

vector pixel measurements. However, we want to discuss the performance of computational

imaging systems that are corrupted by noise. Our image formation equation will be the
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same as used in Chapter 4

g = Hf + η. (5.1)

Here we take g to be the vector of pixel measurements (a vector in ℜN ), and f now

represents the vector of unknown signal coefficients, which may represent a number of

possible features contained within the plenoptic function. η is a per-pixel additive noise

vector, and H is the multiplexing matrix, which may be shift invariant, or it may take a

more general form. For now, we assume that the noise is i.i.d and sampled from a zero

mean Gaussian distribution η ∼ N (0, σ2I), where I is the identity matrix. We relax this

assumption in Section 5.2.1, where we incorporate the effects of signal dependent noise. For

noisy images, we measure image quality using the Signal-to-Noise Ratio (SNR) as a metric

that quantifies the strength of a signal relative to the amount of noise present. The SNR

measures the amount of variation in the signal due to noise (σ) relative to the average signal

level (J)

SNR =
σ

J
. (5.2)

For physical systems, the measurement matrix is usually restricted to be all positive

Hi,j > 0. (5.3)

Assuming the matrix H is invertible, an estimate of the demultiplexed image can be

found simply as

f∗ = H−1g, (5.4)

= f +H−1η. (5.5)

Note that here we are assuming a linear decoding process. In many cases, the estimate

f∗ can be improved by using a non-linear estimation technique, especially when statistical

information on the distribution of input signals is accessible ahead of time. We have more
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to say on this matter in Section 5.4, but for know we stick with the assumption that the

estimation is linear to make analysis tractable.

We use the expected Mean Squared Error (MSE) as a metric to quantify the amount

of errors in the estimate f∗. This is consistent with the performance evaluations performed

in Chapters 2, 3, and 4, where we used the MSE to quantify the amount of deblurring

errors after deconvolution. The MSE will provide us with a consistent means of comparing

performance for both general multiplexing techniques, as well as techniques that produce

shift invariant blur, such as EDOF and motion invariant cameras.

The MSE is essentially a measurement of the noise variance in the estimate f∗ so that

we can write the SNR of the demultiplexed image as

SNR =

√
MSE

J
. (5.6)

The MSE for the estimate f∗ is given by

MSE = E

[

1

N
‖f∗ − f‖2

]

(5.7)

= E

[

1

N
‖H−1η‖2

]

. (5.8)

Defining the error vector e = H−1η, the MSE becomes

MSE = E

[

1

N

N
∑

i=1

e2i

]

(5.9)

=
1

N

N
∑

i=1

E
[

e2i
]

. (5.10)

Defining the matrix H̃ = H−1, the expected squared error for the ith pixel becomes
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E
[

e2i
]

= E





N
∑

j=1

(H̃i,jηj)
2



 (5.11)

=
N
∑

j=1

H̃2
i,jE

[

η2j
]

(5.12)

= σ2
N
∑

j=1

H̃2
i,j. (5.13)

The MSE can then be written as

MSE =
σ2

N
Tr(H−tH−1). (5.14)

Where Tr() is the matrix trace operator. As a point of comparison, we consider the

baseline case with no multiplexing. For the baseline case, H = I, and the MSE becomes

MSEb =
σ2s
N
Tr(I−tI−1). (5.15)

= σ2s . (5.16)

To measure the performance of a given multiplexing matrix H, we compare the MSE

against the baseline case. We refer to the SNR gain Q as the improvement in SNR of a

multiplexed measurement, relative to a non-multiplexed measurement. Defining σm as the

noise variance for the multiplexed measurement, the SNR gain is

Q =

√

MSEb

MSE
(5.17)

=

√

σ2s
MSE

(5.18)

=

√

N

Tr(H−tH−1)

σ2s
σ2m

. (5.19)

The SNR gain is maximized when the quantity Tr(H−tH−1) is minimized. When the

noise is signal independent, σs = σm, and the matrix that minimizes this quantity is known

to be the Hadamard matrix [Harwit and Sloane, 1979], when negative matrix entries are
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allowed, and the S-matrix when matrix entries are restricted to be non negative. The S-

matrix can be derived from the Hadamard matrix, and its entries consist of only ones and

zeros. The minimum trace for the S-matrix is Tr(S−tS−1) = 4(N − 1)2/N

Tr(S−tS−1) = 4
N2

(N + 1)2
(5.20)

≈ 4. (5.21)

The SNR gain when the S-matrix is used for multiplexing is then

Q ≈
√
N

2
. (5.22)

However, when the noise is signal dependent, the S-matrix is no longer optimal, and

the maximum SNR gain that can be achieved is lower.

We note that the trace of a matrix H is the sum of the diagonal elements of the matrix,

which is also equal to the sum of its eigenvalues λi

Tr(H) =
N
∑

i=1

ai,i (5.23)

=

N
∑

i=1

λi. (5.24)

Since the eigenvalues of the inverse of a matrix H−1 are just equal to λ−1
i , we can write

the MSE from Equation 5.25 as

MSEb =
σ2s
N

N
∑

i=1

λ−2
i , (5.25)

and the SNR gain can be written as

Q =

√

N
∑N

i=1 λ
−2
i

σ2s
σ2m

.. (5.26)
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As we discussed in Chapter 4, equations 5.2 and 5.26 are particularly useful if the matrix

H is a shift invariant transformation. This is the case when the coding comes in the form of

convolution with a blur kernel h. Then H is Toeplitz or block Toeplitz, and its eigenvalues

are the Fourier coefficients of the blur kernel h. We revisit the topic of convolution coding

in Section 5.3, where we discuss convolution in the continuous domain.

5.2.1 Sources of Noise

Ideally, pixels would would contain no uncertainty in their measurements, and each time

we measures the same signal, we would record the same value. There are, however, several

sources that cause uncertainty in the measurement of a pixel: photon noise, dark current

noise, and read noise.

5.2.1.1 Read Noise

Read noise is signal independent noise that is generated from electrical noise in the camera

circuitry. The intensity value of a pixel is generated by first sending the detected electri-

cal signal through an amplifier then an Analaog-to-Digital Converter (ADC). The ADC

quantizes the signal into a digital number between 0 and ADU , where ADU represent the

maximum number that can be represented after ADC quantization. For instance, for a

12-bit sensor, ADU = 212 − 1. Read noise can be divided into two noise sources [Schechner

et al., 2007] [Healey and Kondepudy, 1994]. Noise that is generated upstream of the the

amplifier is magnified along with the signal, so that the variance in electrons increases with

amplification, but the variance in gray levels σ21 remains fixed. For a perfect ADC, σ1 is

simply the variance caused by the uniform quantization of one Gray Level (GL), so that

σ1 = 1/
√
12 GL. Typically, however, σ1 is larger so that the ADC can only effectively quan-

tize to ADU/σ1 distinct gray levels instead of ADU . Noise that is generated downstream

of the amplifier is remains constant with a fixed variance in electrons at σ20 . The total read

noise is then

σ2r = g2σ21 + σ20 , (5.27)
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where g is the camera gain, measured in units of photo-electrons per gray level (e−/GL).

The camera gain has an inverse relationship with the sensitivity, or ISO. Lower sensitivity

settings correspond to higher gain settings, and vice-versa.The read noise is affine in the

camera gain so that an increase in the camera gain, corresponding to a decrease in sensitivity,

resulting in an increase in read noise.

We typically adjust the camera gain to avoid saturation, however it makes little sense to

allow the gain to be set arbitrarily. The minimum gain setting is 1e−/GL, since a smaller

gain level cannot change the quantization of photoelectrons, and hence will have a null effect

on the measured signal. It is common, however, to have a minimum gain setting that is

greater than 1e−/GL since, according to the affine model, there is no point in allowing the

gain to be set such that gminσ1 ≪ σ0 since the total read noise cannot be reduced below

σ0.

There is also typically a maximum gain level that is set by the maximum amount of

photo-electrons that can be stored by a single photodetector element, referred to as the

Full Well Capacity (FWC) of the sensor. The largest gain value for a sensor is usually

set to be gmax = FWC/ADU , which ensures that the maximum signal level that can be

recorded by the sensor translates to the maximum image intensity. A gain greater than this

would map the maximum signal level to a smaller number, effectively reducing the number

of quantization levels in the image.

5.2.1.2 Photon Noise

The energy collected when light is absorbed by a pixel is quantized due to the discreet

nature of photons. Furthermore, the electrical energy that is generated by the photo-

electric conversion process is also quantized into discreet amounts of electrons. The process

of converting photons to electrons is a random counting event that can be described by a

Poisson process. The variance and mean are equal to each other for a Poisson distribution,

so if Ji is the expected number of photo-electrons collected by a pixel, the photon noise

variance σ2pi = Ji.

Poisson distributions have the interesting property that when the variance is larger than

around 10, the distribution can be well approximated by a Gaussian. Typically we capture
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more than 10 photo-electrons per pixel, and we can therefore treat Photon noise as signal-

dependent Gaussian noise whose variance depends on the amount of light in the captured

signal.

5.2.1.3 Dark Current Noise

Photo-electrons are also randomly generated by thermal excitation in the sensor. Thermally

generated electrons also follow a Possion distribution, where the variance is given by σ2d =

Dt. D is referred to the dark current of the camera, and t is the exposure time. Dark current

noise becomes significant in applications, such as astronomy, where very long exposure times

are prevalent. For most cameras, dark current noise is negligible for exposure times less than

one second. From this point on, we focus our attention on cameras that require relatively

high speed operation so that dark current noise can be ignored.

5.2.1.4 Total Noise

The noise sources are independent so that the total noise variance for the ith pixel becomes

(ignoring dark current noise)

σ2i = Ji + g2σ21 + σ20. (5.28)

If we have an image with N pixels and we define the average signal level as J =

1
N

∑N
i=1 Ji, the average noise variance of the image is then

σ2 = J + g2σ21 + σ20 . (5.29)

5.2.2 Optimal Multiplexing

Multiplexing with the S-matrix is optimal when measurement noise is dominated by read

noise, but when photon noise dominates, it no longer becomes optimal. In fact, the multi-

plexing gain is no longer greater than one so that a non-multiplexed measurement actually

has a greater SNR. In practice, however, photon noise is not infinitely greater than read

noise. More realistically, different imaging scenarios will result in different ratios of photon
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to read noise χ = σp/σr. While the S-matrix is no longer optimal when χ > 0, some other

matrix may be.

The problem of identifying matrices that are optimal under different values of χ was

explored by Ratner et al [Ratner and Schechner, 2007] [Ratner et al., 2007] . We define the

optical efficiency C as the number of non-zero elements in a row of the multiplexing matrix

H

C =

N
∑

j=1

Hi,j. (5.30)

Assuming the same camera gain setting for multiplexed and non-multiplexed measure-

ments, referring to Equation 5.19, the SNR gain for the matrix H becomes

Q(C)2 =
N

Tr(H−tH−1)

1 + χ2

1 +Cχ2
, (5.31)

Ratner et al. used an optimization routine to search for a matrix that maximizes the

SNR gain for a given value of χ. In general the trend discovered was that the amount

of photon noise decreases as the optimal value of C decreases. This trend can be seen in

Figure 5.1, which plots the SNR gain vs. C for a variety of values of χ.

Ratner et al. explored this topic further and found an analytic expression for the

minimum trace T ∗(C) that can be achieved for any multiplexing matrix

T ∗(C) = min{Tr(H−tH−1)} (5.32)

=
(N − C) + C(N − 1)2

(N − C)C2
. (5.33)

Equation 5.33 is a very significant result because it allows us to derive the maximum

SNR gain that can be achieved for any coding technique that sacrifices light. This means

the the same bound holds for all the light masking techniques mentioned in Chapter 5.1,

including spectral [Harwit and Sloane, 1979] [Hanley et al., 1999] [Baer et al., 1999], light

field [Veeraraghavan et al., 2007] [Lanman et al., 2008] [Liang et al., 2008], illumination

multiplexing [Schechner et al., 2003] [Schechner et al., 2007] [Ratner and Schechner, 2007]

[Ratner et al., 2007], coded aperture defocus deblurring [Levin et al., 2007] [Veeraraghavan
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Figure 5.1: Multiplexing gain (Q) vs. optical efficiency (C) for various ratios of photon to

read noise variance (χ2) using a multiplexing matrix with size N = 57. The results are

calculated using Equation 5.33. When χ = 0, photon noise is absent, the optimal efficiency

is C = 29, and the optimal multiplexing matrix is the S matrix. As the amount of photon

noise increases, both the optimal efficiency, and the maximum SNR gain decrease. When

χ2 = .225, the optimal efficiency is C = 11, and the maximum SNR gain is just Q = 1.75.
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et al., 2007] [Zhou and Nayar, 2009] [Zhou et al., 2011], and shutter-based motion deblurring

[Raskar et al., 2006].

While Schechner et al. explored this problem in detail, they only considered the case

where the camera gain is identical for multiplexed and non-multiplexed measurements.

This scenario only occurs when both the multiplexed and non-multiplexed signals are small

enough to remain unsaturated at the lowest gain setting (highest sensitivity). For larger

signal levels, the camera gain will need to be set independently for multiplexed and non-

multiplexed measurements, and the read noise for the multiplexed and non-multiplexed

measurements will no longer be the same.

5.2.3 Multiplexing Noise and Camera Gain

We now relax the restriction that the multiplexed measurement must remain below satu-

ration at the lowest camera gain setting. We derive the noise variance for the multiplexed

and non-multiplexed measurements under the assumption that the gain is set appropriately

so that each measurement avoids saturation.

The average non-multiplexed image brightness Is = J/gs measured in gray levels (GL)

depends on the camera gain gs.

Is = J/gs. (5.34)

The image will have some variation about the average brightness J . As a measure of the

dynamic range in the image, we denote D the proportionality constant between the peak

signal brightness Jpeak and the average signal J

Jpeak = D · J. (5.35)

To avoid saturation for the non-multiplexed image, we set the gain for the non-multiplexed

image so that

gs =
D · J
ADU

. (5.36)
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Our multiplexed image is C times brighter than our non-multiplexed image. Denoting

the gain for the multiplexed measurement gm, the brightness in GL for our multiplexed

measurement is Im = C ·J/gm. In order to avoid saturation for the multiplexed measurement

we set the gain so that

gm = C
D · J
ADU

, (5.37)

= Cgs (5.38)

where in Equations 5.36 and 5.37 we have assumed that the peak signal level of our

multiplexed measurement is less than the FWC of the sensors so that C · D · J ≤ FWC.

The ratio between the average noise for multiplexed and non-multiplexed measurements is

then

σ2s
σ2m

=
J + g2sσ

2
1 + σ20

CJ + C2g2sσ
2
1 + σ20

. (5.39)

We also define an upper bound on the ratio of the two noise levels

σ2s
σ2m

≤ J + g2max
C2 σ

2
1 + σ20

CJ + σ20
. (5.40)

The expression in the numerator follows from the fact that since the multiplexed mea-

surement does not saturate at the highest gain setting, the non-multiplexed measurement

must have a gain setting that is at least C times smaller. The expression in the denomi-

nator follows from the fact that as the camera gain decreases, the total read noise variance

approaches σ20 .

5.2.4 Multiplexing Limits

We now derive an upper bound on the maximum SNR gain that can be achieved with any

multiplexing matrix H. Using the expression for the minimum trace given in Equation 5.33,

the optimal SNR gain can be written as
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Q2(C,N) =
N

Tr(H−tH−1)

σ2s
σ2m

(5.41)

≤ σ2s
σ2m

C2 (N − C)

C N − 2C + 1
(5.42)

5.2.4.1 Large Multiplexing Matrices

The upper bound on Q2(C,N) is a monotonically increasing function. Writing the upper

bound as Q̃2(C,N), we can be verify this by taking the derivative with respect to N , and

observing that the result is strictly positive

dQ̃2(C,N)

dN
=
σ2s
σ2m

C2(C − 1)2

(CN − 2C + 1)2
> 0 (5.43)

As a result, Q̃ reaches a maximum when N = ∞. Denoting QN (C) as

Q2
N (C) = lim

N→∞
Q̃2(C,N) (5.44)

= C
σ2s
σ2m

(5.45)

Since the multiplexing gain monotonically increases with N , we expect the upper bound

given by Equation 5.45 to decrease for small matrices. The upper bound given holds for

all matrices, but the bound is tightest when the multiplexing matrices are large (e.g. N >

1000).

We get an upper bound for the SNR gain by substituting the noise bound from Equation

5.40

Q2
N (C) ≤ C

J + g2max
C2 σ

2
1 + σ20

CJ + σ20
(5.46)

We can now find the the value Cmax that maximizes this upper bound by taking deriva-

tives with respect to C
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Cmax = argmax
C

dQ2

dC
(5.47)

=
Jg2maxσ

2
1 + s

Jσ20 + σ40
, (5.48)

where s =
√

g2maxσ
2
1(J

2g4maxσ
4
1 + Jσ20 + σ30). Substituting Cmax into QN gives an upper

bound that is independent of C

Q2(C,N) ≤ Q2
N (Cmax) (5.49)

≤ 2g2maxσ
2
1(J + σ20)

Jg2maxσ
2
1 + s

(5.50)

≤ 1 +
σ20
J
, (5.51)

where in Equation 5.51 we have used the fact that s > Jg2maxσ
2
1 . We first point out

that the upper bound is always greater than one. However, the amount greater than

one is inversely proportional to the signal level J . Therefore the multiplexing gain will

asymptotically approach one for large signal levels. Thus, while optimal multiplexing can

never hurt you, there will be scenarios where the benefit is marginal. We note for instance

that if we want to achieve a (squared) multiplexing gain that is ǫ greater than one, this

puts an upper bound on the maximum signal level

J <
σ20
ǫ
. (5.52)

This bound significantly decreases the space of imaging scenarios that will give the

desired multiplexing gain. As an example consider a Canon 1D Mark II sensor. The total

read noise variance at the lowest gain setting is 16e−, which is typical of a high quality

CMOS sensor. For this camera, it is not possible to achieve a multiplexing gain greater

than
√
2 if the non-multiplexed signal level is greater than 16e−. Note that this is only a

minute fraction of the maximum signal level that can be recorded by the system since for

this sensor FWC = 80, 000e−.

Initially, we assumed that the the sensitivity of the camera was adjusted to avoid satu-

ration and minimize noise for both the multiplexed and non-multiplexed measurements. We
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note, however, that Equation 5.51 is independent of the gain settings for multiplexed and

non-multiplexed measurements. This means that the same bound holds even if the light

level is sufficiently small that it is necessary to set the camera gain to the lowest setting for

both measurements.

5.2.4.2 Interpretation for Large Multiplexing Matrices

The bound given by Equation 5.51 is particularly useful in evaluating the performance of

coded aperture defocus deblurring systems [Levin et al., 2007] [Veeraraghavan et al., 2007]

[Zhou and Nayar, 2009] [Zhou et al., 2011] and shutter based motion deblurring systems

[Raskar et al., 2006]. In all of these systems, the number of multiplexed measurements N is

equal to the number of pixels (i.e N ≈ 106), therefore the bound derived in Equation 5.45

is quite accurate. For these systems it is always possible to find a multiplexing strategy

that will give a SNR gain greater than one. However, depending on the signal level, the

amount that the SNR gain is greater than one may be negligible. Furthermore, because

these systems are inherently shift invariant, there are physical constraints that may prevent

implementation of the optimal coding strategy. Also, since the computational technique

will always require more resources, even a small amount of SNR gain may not warrant

choosing a computational technique over a conventional one. In summary, we expect that

the scenarios where a computational technique provides a sufficient performance advantage

is extremely limited.

5.2.4.3 Small Multiplexing Matrices

The upper bound on SNR gain given by Equation 5.51 is a very easy to interpret result

that holds for all matrices. The SNR gain for any multiplexing matrix is never greater

than one plus the ratio of read to photon noise. This bound is tight for large multiplexing

matrices, but it becomes weak for smaller matrices. We know derive a tighter bound for

smaller matrices.

Let us define the read noise at the highest signal level as σ2rmax = g2maxσ
2
1 + σ20 , and the

read noise at the lowest gain setting as σ2rmin = g2minσ
2
1+σ

2
0. Then we can rewrite Equation

5.42 as
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Q2(C,N) ≤ J + σ2rmax

CJ + σ2rmin

C2 (N − C)

C N − 2C + 1
(5.53)

≤ J + σ2rmax

CJ + σ2rmin

C (N −C)

N
. (5.54)

We find the value for Cmax that maximizes this bound by differentiating

Cmax = argmax
C

dQ2

dC
(5.55)

=
s− σ2rmin

J
. (5.56)

where s =
√

σ2rmin(σ
2
rmin +NJ). Substituting the minimizer back into Equation 5.54

gives the expression

Q2(C,N) ≤
(

J + σ2rmax

) (

s− σ2rmin

) (

σ2rmin +NJ − s
)

sNJ2
. (5.57)

Equation 5.57 implies an upper bound on the maximum signal level that can achieve an

SNR gain greater than one

Jmax <
N

4

σ4rmax

σ2rmin

. (5.58)

This bound is only meaningful when Jmax < FWC, which requires a relatively small

value for N (e.g. N ≪ 1000) and that the maximum read noise variance is not significantly

greater than the minimum read noise variance. For instance, the Canon 1D Mark II sensor

has a large difference in the maximum and minimum read noise values. When a multiplexing

matrix of size N = 64 is used with this sensor, the bound becomes Jmax < 10242e−, which is

greater than the FWC. On the other hand, when a Lumenera Lu570 sensor is used instead,

the bound becomes Jmax < 1024e−. This limits the maximum signal range to within a

fraction of the maximum signal level that can be recorded by the sensor.

As a final note, we mention that when both the non-multiplexed and the multiplexed

signal are below saturation at the lowest gain level, the total read noise is the same for both
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measurements, and then the largest signal that will allow an SNR gain greater than one

becomes

Jmax <
N

4
σ2rmin. (5.59)

For instance if a Canon 1D Mark II is used with a multiplexing matrix of size N = 64,

the maximum signal level that will result in a multiplexing gain is Jmax < 64e−, which is a

very weak signal.

5.2.4.4 Interpretation for Small Multiplexing Matrices

We saw that for large multiplexing matrices, there is always a coding strategy that will

result in a multiplexing gain greater than one. However, for small matrices, we see that this

is not the case, and there will be a maximum signal level above which it is not possible to

achieve a SNR gain. The bound given by Equation 5.58 is particularly useful in evaluating

the performance of color [Baer et al., 1999] [Ihrke et al., 2010], light field [Veeraraghavan et

al., 2007] [Lanman et al., 2008] [Liang et al., 2008] and illumination multiplexing systems

[Schechner et al., 2003] [Schechner et al., 2007] [Ratner and Schechner, 2007] [Ratner et

al., 2007]. In all of these systems, the number of multiplexed measurements N is small (i.e

N ≤ 16). Therefore the maximum signal level that will result in a multiplexing gain greater

than one is extremely small (i.e. J < 64e−). When the signal level is greater than this,

conventional techniques will exhibit superior performance. We discuss how to map lighting

conditions into photon counts in Section 5.4.1. For now we simply state that, as is the case

when N is large, the scenarios where these techniques achieve a performance advantage over

conventional techniques is extremely limited.

5.3 Coding For Invariance

Blur is a common problem in imaging systems. For a perfectly focusing imager, the Point

Spread Function (PSF) is a perfect delta function. Then, the brightness at a point on

an object maps directly to a point on the image. When an imaging system exhibits blur,

object points are blurred so that they map to an area on the sensor instead of a point. This
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blurring in the image typically suppresses the energy at high frequencies in the Modulation

Transfer Function (MTF). When the PSF is known, we can apply deconvolution to remove

blur. Then the MTF tells us directly what the SNR of recovered images will be.

The deconvolution problem is analogous to the coding problem discussed in the pre-

vious sections. In the discrete case, blurring a focused image with a PSF corresponds to

multiplication by a coding matrix H that is block Toeplitz, and the MTF corresponds to

the singular values of this matrix. In the equations that follow, we use the continuous form

of the PSF and MTF to derive the MSE and SNR gain after deconvolution.

In a variety of applications, a conventional camera introduces an undesirable variation in

MTF over some domain, for instance object depth or motion. This variation is particularly

undesirable when all states in the domain are equally likely. Then, the best strategy is

to introduce coding in the imaging system that equally preserves energy in the MTF over

all states. Parseval’s theorem, however, dictates that there is a limit to how much we can

simultaneously maximize MTF and achieve MTF invariance [Levin et al., 2008] [Levin et

al., 2009] [Cho et al., 2010] . As a consequence, there is an upper bound on the maximum

domain invariant MTF that can be achieved.

We need to be careful when we talk about domain invariant blur. There are two types

of domain invariant blur. For the first type, both the MTF and PSF are invariant. This is

the most desirable type of invariance because it allows deconvolution to be applied without

first estimating the PSF. Unfortunately it is very difficult to derive upper bounds on the

MTF for this type of invariance. It is however, possible to derive upper bounds for the

second type of invariance, where the MTF is invariant, but the PSF may not be. Of course

if the PSF is not invariant, then we need a way to estimate the PSF before we can apply

deconvolution. However, we can think of these bounds as being somewhat conservative in

the sense that they tell us, assuming the best case where we can estimate the PSF perfectly,

what is the minimum MSE that can be achieved. Furthermore, the upper bounds derived

for the second type of invariance must also apply for the first type of invariance (perhaps

weakly) since the first type is more constrained than the first.

Here we focus on two application areas: motion and defocus deblurring. In both these

scenarios, blur suppresses important scene details, and the amount of blur can vary signifi-
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cantly within an image. The amount of motion blur varies depending on object speed, while

the amount of defocus blur depends on object depth. In both cases, their is a tension be-

tween the amount of light captured, and the amount of blur introduced. Increasing exposure

time increases the amount of light captured, but also increases motion blur. Analogously,

increasing aperture size increases the amount of light captured but increases defocus blur.

Consequently, it is always possible to remove blur by sacrificing light: either by reducing

exposure time, or stopping down the lens aperture.

A common strategy that has been used to combat both types of blur without sacrificing

light is to remove the object dependent variation in MTF. For example, parabolic camera

motion can be utilized to create a motion independent MTF, and translating the sensor

along the optical axis during exposure can produce blur that is independent of depth. The

MTFs for these techniques have been derived in [Levin et al., 2008] [Levin et al., 2009].

Using the MTF, a lower bound on the MSE can be derived, and using the machinery from

the previous sections, the maximum SNR gain can be calculated for these techniques.

The problem of engineering a depth-invariant MTF is closely related to the problem

of engineering a motion invariant MTF. Both problems can be well understood by using a

phase space representation to analyze the problem. For the case of 2D motion blur, we use a

3D space-time parameterization, for defocus blur, we use a 4D light field parameterization.

In both cases, optimal performance is achieved when energy in Fourier space is maximized

over a restricted domain, subject to conservation of energy constraints. For motion blur,

energy in Fourier space is restricted to lie within an double cone whose apex angle is

determined by the range of object speeds. For defocus blur, energy is restricted to a 3D

manifold within 4D Fourier space. Levin et al. and Cho et al. provide an excellent overview

of these concepts [Levin et al., 2008] [Levin et al., 2009] [Cho et al., 2010] .

5.3.1 MSE in Continuous Form

At this point, we transition from the discrete to continuous domain, which will provide a

convenient means of calculating the MSE for each of these techniques. We return to the

analysis of shift-invariant systems introduced in Chapter 1. A blurry image g(x, y) is then

the convolution of a latent focused image f(x, y) and the system Point Spread Function
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h(x, y),

g(x, y) = f(x, y)⊗ h(x, y). (5.60)

This equation can be expressed compactly in the Fourier domain, where convolution

becomes a multiplication

G(ωx, ωy) = F (ωx, ωy) ·H(ωx, ωy), (5.61)

where ωx and ωy are spatial frequencies in the x and y directions, respectively. The

Fourier transform of the blur kernel H(ωx, ωy) is the Optical Transfer Function (OTF) of

the camera. The modulus of the OTF is the MTF, which is an indicator of how much

different spatial frequencies are attenuated by the system. With this notation, we can then

write the average image intensity as

J =
1

Dx ·Dy

∫ W/2

−W/2

∫ H/2

−H/2
g(x, y)dxdy (5.62)

=
F (0, 0)H(0, 0)

Dx ·Dy
, (5.63)

where Dx and Dy are the height and width of the image, respectively. Note that if the

optical system allows C times more light through so that H(0, 0) becomes C ·H(0, 0), the

average signal intensity becomes C · J . When we capture an image, the blurred image is

perturbed by additive noise, represented by the random function ψ(x, y) and its Fourier

spectrum Ψ(ωx, ωy). The captured image spectrum Q0 is then

G0(ωx, ωy) = F (ωx, ωy) ·H(ωx, ωy) + Ψ(ωx, ωy). (5.64)

We form an estimate of our focused image spectrum F ∗ by dividing the captured image

spectrum G0 by the OTF. Assuming that there are no zero crossings in the OTF, the

estimate becomes
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F ∗(ωx, ωy) =
G0(ωx, ωy)

H(ωx, ωy)
(5.65)

= F (ωx, ωy) +
Ψ(ωx, ωy)

H(ωx, ωy)
. (5.66)

The MSE is the expected L2 norm on the difference between the estimated image and

the focused image

MSE = E[‖F (ωx, ωy)− F ∗(ωx, ωy)‖2] (5.67)

= E

[

∣
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]

(5.68)

When the noise is Gaussian, the MSE becomes

MSE = σ2
∣

∣

∣

∣

∣

∣

∣

∣

1

H(ωx, ωy)

∣
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∣

∣

∣
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∣

∣

2

(5.69)

Although the assumption that the noise is Gaussian is somewhat restrictive, the as-

sumption works quite well for Poisson distributed noise with variance greater than about

about 10.

We assume that the focused image is bandlimited by the Nyquist frequency Ω = 1/2∆,

where ∆ is the pixel size. Then the frequencies outside the range |ωx|, |ωy| < Ω do not

contribute to the MSE. Defining the normalized frequency coordinates ω′
x = ωx∆ and

ω′
y = ωy∆, we can write the MSE as

MSE = σ2
∫ 1/2

−1/2

∫ 1/2

−1/2

1

‖H(ω′
x, ω

′
y)‖2

dω′
xdω

′
y. (5.70)

Note that, if the captured image intensity is measured in terms of photons, according

to this definition, the MSE is properly normalized so that if the PSF is a delta function,

h(x, y) = δ(x, y), the OTF is constant, H(ωx, ωy) = 1, and the MSE is equal to σ2s =

J + g2sσ
2
1 + σ20 . This is consistent with the discrete form of the MSE, which also reduces to

MSE = σ2s when the multiplexing matrix is equal to the identity. Also note that when the



CHAPTER 5. ON THE LIMITS OF COMPUTATIONAL IMAGING 129

optical system becomes C times more efficient so that H(0, 0) becomes C ·H(0, 0), and the

camera gain is adjusted to avoid saturation at the increased light level, the noise variance

becomes σ2 = σ2m = C · J + C2g2mσ
2
1 + σ20. Thus, the notation for the noise variances is

consistent with the definitions in Section 5.2.3.

5.3.2 Performance Limits for Motion Blur

Cameras exhibit motion blur when objects move during exposure so that points in the

image are blurred along the direction of motion. A scene may consist of multiple objects

moving at different speeds and directions. Levin et al. showed that, for 1D motion blur,

parabolic camera motion creates a motion invariant PSF that nearly achieves the upper

bound on the MTF [Levin et al., 2008]. The technique can therefore be used to be remove

blur without first estimating motion, while at the same time nearly achieving the maximum

possible SNR. However, the technique is not applicable for general 2D motion.

Here we consider the general case where objects motion is a 2D vector in image space

coordinates. Cho et al. developed a technique that comes close to achieving the MTF

upper bound, but the technique requires multiple exposures and motion estimation. No

techniques currently exist that achieve a motion invariant MTF without also requiring

motion estimation.

5.3.2.1 The Baseline for Motion Blur

For an exposure time T , an object moving at constant velocity 2D sm = (sx, sy) in image

space, is blurred along the direction of motion by a box shaped kernel with width equal to

bm = |sm|T . Denoting the maximum object speed as Sm so that −Sm ≤ |sm| ≤ Sm, the

maximum blur size for the scene then becomes bmax = TSm. Motion blur becomes apparent

when the maximum blur size is larger than a pixel so that bmax > ∆. Thus, motion blur

can be removed by setting the exposure time T so that the maximum blur size is equal to

one pixel. We define the baseline exposure time Tb as

Tb =
∆

Sm
. (5.71)
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When the exposure time is equal to Tb, the motion blur becomes so small that the

PSF effectively becomes a delta function for all motions. We use this case as a baseline

for comparing the performance of any motion deblurring technique. Here we assume that

the image intensity f(x) is measure in units of power, and the PSF hmi(x) is measured

in units of time, which ensures that J = F (0, 0)H(0, 0)/(H · W ) is in units of photons.

Then the D.C. component of the OTF becomes Hmi(0, 0) = Tb. Defining the average power

P̄ = F (0, 0)/(Dx ·Dy), the average signal becomes J = P̄ Tb. The MTF for the motion blur

baseline is constant

Hmb(ωx, ωy) = Tb, (5.72)

and, using the same notation for the noise in the absence of multiplexing, σs, as used in

the previous section, the MSE is

MSEmb =
σ2s
T 2
b

. (5.73)

5.3.2.2 Motion Invariant Blur

When the exposure time is increased by a factor of C to T = C · Tb, the amount of light

captured increases by a factor of C, but the maximum blur size also increases by the same

factor, causing motion blur to become larger than one pixel. When motion blur is larger

than one pixel, the blur can be engineered to become motion invariant, allowing it to be

be removed via deconvolution. The question becomes whether or not the combination of

increased light and deconvolution results in a net gain in MSE.

5.3.2.3 MSE for 1D Motion Invariant Blur

Levin et al., analyzed techniques that produce an MTF that is motion invariant over a

desired range of 1D velocities [Levin et al., 2008]. They derived an upper bound on the best

possible MTF that can be achieved, and introduced a technique that produces an MTF that

is close to the upper bound, while at the same time producing a motion invariant PSF. In

this technique, constant acceleration is intentionally applied to the camera during exposure
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so that the camera speed matches the speed of all objects in the scene at least once during

exposure. In this setting, the D.C. component of the OTF is Hmi(0) = C · Tb. The upper

bound on the squared motion invariant MTF is

‖H1D(ωx)‖2 ≤ CTb
2Sm|ωx|

, , (5.74)

where ωx is assumed to be the direction of object motion. In this setting, the range of

camera speeds that are spanned during exposure is 2Sm, and the MTF is motion invariant

for moving objects that would otherwise produce a blur kernel with widths less than or equal

to the maximum blur size bmax = CTbSm. Using the same notation for noise in presence of

multiplexing as used in the previous section, the lower bound on the motion invariant MSE

then becomes

MSE1D ≥ σ2m

∫ 1/2

−1/2

1

‖H(ω′
x)‖2

dω′
x. (5.75)

=
2σ2mSm
CTb∆

∫ 1/2

−1/2
|ω′

x|dω′
x. (5.76)

=
σ2m

2CT 2
b

(5.77)

5.3.2.4 SNR Bound for 1D Motion Invariant Blur

The maximum gain in SNR Qmi that can be achieved when using a 1D motion invariant

technique, relative to using a shorter exposure time, then becomes

Q2
1D ≤ MSEmb

MSE1D
. (5.78)

= 2C
σ2s
σ2m

. (5.79)

Interestingly, the upper bound on the SNR gain for a motion invariant camera is equal

to
√
2 times the SNR gain for optimal multiplexing, and hence the optimal increase in

exposure time is equal to the optimal row sum Cmax for multiplexing given by Equation

5.48.
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Substituting for C gives an upper bound for the motion invariant SNR gain in terms of

only signal strength and sensor noise

Q2
1D ≤ 2 +

2σ20
J
. (5.80)

In this case, the SNR gain is always greater than
√
2. However, the amount greater

than
√
2 decreases asymptotically with the signal level, and again we have an upper bound

on the maximum signal level that will result in a (squared) SNR gain that is ǫ greater than

one

J <
2σ20
ǫ− 1

. (5.81)

Again, the bound significantly reduces the space of imaging scenarios that will give the

desired multiplexing gain. In this case, when using the Canon Mark II, it is not possible

to achieve a multiplexing gain greater than
√
3 if the uncoded signal level is greater than

32e−.

5.3.2.5 MSE for 2D Motion Invariant Blur

Cho et al., analyzed the problem of producing a motion invariant MTF for the case of

general 2D motion [Cho et al., 2010] . They derived an upper bound on the best possible

MTF that can be achieved, and introduced a technique that produces an MTF that is close

to the upper bound. However, the technique does not produce a motion invariant PSF

and therefore requires motion estimation. In this technique, two images are captured with

constant acceleration in orthogonal directions.

The upper bound on the motion invariant MTF for 2D motion is

‖H2D(ωx, ωy)‖2 ≤
CTb

2Sm|ωr|
, (5.82)

where |ωr| =
√

ω2
x + ω2

y . the lower bound on the motion invariant MSE for general 2D

motion then becomes



CHAPTER 5. ON THE LIMITS OF COMPUTATIONAL IMAGING 133

MSE2D ≥ σ2m

∫ 1/2

−1/2

1

‖H(ω′
x, ω

′
y)‖2

dω′
xdω

′
y. (5.83)

=
2σ2mSm
CTb∆

∫ 1/2

−1/2

√

ω′2
x + ω′2

y dω
′
xdω

′
y. (5.84)

=
σ2mSd
CTb∆

√
2 + sinh−1(1)

6
(5.85)

>
3

4

σ2m
CT 2

b

(5.86)

5.3.2.6 SNR Bound for 2D Motion Invariant Blur

The maximum gain in SNR Qmi that can be achieved when using a 2D motion invariant

technique, relative to using a shorter exposure time, is

Q2
2D ≤ MSEmb

MSE2D
. (5.87)

=
4

3
C
σ2s
σ2m

. (5.88)

This upper bound on the SNR gain for 2D motion is only slightly better than the

multiplexing gain given in Equation 5.45, and slightly worse than the SNR gain for 1D

motion blur. As in the case of 1D motion, the optimal increase in exposure time is equal

to the optimal row sum for multiplexing given by Equation 5.48. The upper bound for the

SNR gain is

Q2
2D ≤ 4

3
+

4

3

σ20
J
. (5.89)

In this case, when using the Canon Mark II, it is not possible to achieve a multiplexing

gain greater than
√

4/3 if the uncoded signal level is greater than 32e−.

5.3.2.7 Motion Extension for Motion Invariant Blur

There is another interesting way to interpret Equations 5.80 and 5.89. Suppose that instead

of asking what the maximum SNR gain I can get from motion invariant photography, we
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ask instead what is the most we can extend the range of speeds using motion invariant

photography without sacrificing SNR. We derive the result for 1D motion, but the results

are the same for 2D motion as well. Then the range of speeds for the motion invariant

exposure increases to M1D · Sm, and the new MTF H ′
1D becomes

‖H ′
1D(ωx)‖2 ≤

CTb
2M1DSm|ωx|

, (5.90)

which makes the upper bound for the SNR gain

Q′2
1D ≤ 2

C

M1D

σ2s
σ2m

(5.91)

=
1

M1D
Q2

1D. (5.92)

Thus, if we want to increase the range of speeds by a factor of M1D while also ensuring

the SNR gain Q′2
1D remains greater than 1, we find that

M1D ≤ Q2
1D, (5.93)

so the increase in motion speeds has the exact same bound as the SNR gain given by

Equations 5.80 and 5.89. These equations summarize the best possible performance that

can be achieved using a motion invariant technique. We can think of these upper bounds

as either the maximum SNR gain that can be achieved for a fixed range of speeds, or as the

maximum increase in the range of speeds that can be achieved for a fixed SNR.

For 1D motion, the upper bound is always greater than one for all signal levels. However,

it approaches 2 for large signal levels. Furthermore, the upper bound is only met when the

optimal motion invariant MTF achieved. The parabolic exposure technique developed by

Levin et al. comes closest, but it only achieves the bound for infinitely large exposures. In

practice, the actual SNR gain will be less than
√
2, and the maximum motion extension will

be less than 2, even for large signal levels. We therefore expect that for 1D object motion,

we can achieve at least some performance advantage at all light levels when using a motion

invariant technique.
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For the case of general 2D motion, the upper bound is always greater than one for all

signal levels, but, is only slightly greater than one for large signal levels. The orthogonal

parabolic exposure technique developed by Cho et al. [Cho et al., 2010] comes closest,

but it does not achieve the bound. Furthermore, the technique requires motion estimation

which may propagate errors in PSF estimation that reduce the SNR gain even further. In

summary, the performance advantage in using either a 1D or 2D motion invariant technique

is little to none for large signal levels, even when the optimal MTF is achieved. There is only

hope in achieving a performance advantage when the light levels are very low, as dictated

by Equations 5.52 and 5.81.

Finally, we note that the upper bound was derived under the assumption that the range

of object speeds are distributed uniformly. This is of course the most general case, but one

can imagine scenarios where this distribution is not entirely uniform, and for instance, only

two object motions exist that differ significantly in magnitude. When prior information on

the distribution of motions is known, the upper bounds on the MTF in Equations 5.74 and

5.82 no longer hold so that the bounds derived here are no longer valid.

5.3.3 Performance Limits for Defocus Blur

The discussion on defocus blur will largely parallel the discussion on motion blur. Cameras

exhibit defocus blur when objects are located at depths other than the focal plane of the

camera. The further objects are from the focal plane, the greater the amount of defocus

blur will be. The problem of defocus blur arises due to the finite size of the camera aper-

ture. Pinhole cameras exhibit no defocus blur, while larger aperture sizes introduce greater

amounts of defocus blur. We can thus always remove defocus blur by stopping down the

aperture. We do so however, at the cost of reducing the amount of light captured by the

sensor. An alternative to stopping down the aperture is to use an EDOF camera to produce

a depth-invariant blur. Because the blur is depth invariant, it can be removed via decon-

volution. However, deconvolution amplifies the noise in captured EDOF images. In the

following sections we compare the performance of EDOF techniques relative to a baseline

imaging system with a stopped down aperture.
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5.3.3.1 The Baseline for Defocus Blur

For a square aperture of width A, an object located at a depth d will produce a square

defocus kernel with width equal to bm = |sd|A, where sd = (d − d0)/d, and d0 is the

distance from the lens to the object side focal plane of the camera. When the light field

is parameterized by the 2D lens aperture coordinates (u, v) and the 2D lens focal plane

coordinates (x, y), image points map to hyperplanes in light field space with slope sd,

according to the two relations x = sdu, y = sdv. As in [Levin et al., 2009], for objects in a

depth range d ∈ [dmin, dmax], we choose the focal distance to be d0 = 2dmindmax
dmax−dmin

. Then the

range of light field slopes becomes Sd/2 ≤ sd ≤ Sd/2 and the maximum blur size becomes

bmax = ASd/2, where Sd/2 = dmax−dmin
dmax+dmin

.

Defocus blur becomes apparent when the maximum blur size is larger than a pixel so

that bmax > ∆. In the same way that motion blur can be removed by setting the exposure

time T appropriately, so can defocus blur be removed by setting the aperture width A so

that the maximum blur size is equal to one pixel. We define the baseline aperture width

Ab as

Ab =
2∆

Sm
. (5.94)

When the aperture width is equal to Ab, defocus blur becomes so small that the PSF

effectively becomes a delta function at all depths. We use this case as a baseline for compar-

ing the performance of any defocus deblurring technique. Here we assume that the image

intensity f(x) is measure in units of energy per unit area (irradiance multiplied by time),

and the PSF h(x, y) is measured in units of area (in the aperture plane), which ensures that

J = F (0, 0)H(0, 0)/(Dx ·Dy) is in units of photons. Under the assumption that the MTF

is essentially depth invariant, the MTF for the baseline imaging system is constant

Hdb(ωx, ωy) = A2
b , (5.95)

and the MSE is
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MSEdb =
σ2s
A4

b

. (5.96)

5.3.3.2 Defocus Blur and Diffractive Blur

Defocus blur is a purely geometrical phenomenon that depends only on object depth, aper-

ture size, and the focal length of the lens. However, lenses also exhibit some amount blur

due to the diffraction of light from the aperture. Furthermore, while defocus blur is directly

proportional to aperture size, diffractive blur is inversely proportional to the aperture size.

Therefore, the two types of blur compete, and any attempt to remove one type of blur will

increase the other.

To make a fair comparison between the baseline case with the stopped down aperture

and an EDOF system, we need to account for the diffractive blur in both cameras. We have

two choices, we can either assume that the diffractive blur is removed from both cameras, or

that it is not removed from either camera. To make the problem easier to analyze, we take

the former approach and assume that diffractive blur is removed from the stopped down

camera.

Under the assumption that the MTF is essentially depth invariant for the baseline case,

the MTF for a lens with a square aperture of width Ab is

Hdb(ωx, ωy) = A2
bΛ

(

ωx

ρ

)

Λ

(

ωy

ρ

)

, (5.97)

where Λ(x) = (1 − |x|) is the tophat function, ρ = Ab/(λd0), and λ is the average

wavelength of light. The MSE for the baseline imaging system taking diffraction into account

becomes

MSEdb = σ2mA
2
b

∫ 1/2

−1/2

∫ 1/2

−1/2

1

(1− | ωx
ρ∆ |)2(1− | ωy

ρ∆ |)2 dω
′
ydω

′
x, (5.98)

= σ2mA
2
b

(

2ρ∆

2ρ∆− 1

)2

, (5.99)

= σ2mA
2
b

(

ρ

ρ− Ω

)2

. (5.100)
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The MSE for the baseline case then depends on the relationship between the Nyquist

frequency Ω and the diffraction cutoff frequency ρ. The expression for the MSE in Equation

5.100 is only correct when ρ < Ω. For any larger values of ρ, the MSE becomes infinite

because the MTF at frequencies in the range ωx, ωx > ρ have zero magnitude. Note that

implicitly puts a constraint on the maximum F/# for the baseline imaging system

F# =
d0
Ab

≤ 2∆

λ
. (5.101)

For instance, for a pixel size of ∆ = 2µm, and assuming an average wavelength of

λ = .5µm, the maximum allowable F/# is F/8. This brings us to an important point

about extending DOF. It may be impossible to reduce the aperture to a small enough size

without reducing the diffraction cutoff frequency below the Nyquist frequency. When this

is the case, so long as it is necessary to maintain some energy at frequencies larger than the

diffraction cutoff, the only option available for doing so while at the same time maintaining

the desired DOF is to use an EDOF technique. In this case, the benefit of using an EDOF

technique does not come in the form of SNR gain relative to stopping down the aperture,

it is simply the only way to achieve the desired DOF extension and at the same time fend

off the negative effects of diffraction.

5.3.3.3 Defocus Invariant Blur

The problem of producing depth invariant blur is analogous to the problem of producing

motion invariant blur. When the aperture width is increased by a factor of
√
C to A =

√
C · Ab, the amount of light captured increases by a factor of C, but the maximum blur

size also increases by a factor of
√
C, so that the defocus blur is now larger than one pixel.

When defocus blur is larger than one pixel, the blur can be engineered to become defocus

invariant, allowing it to be be removed via deconvolution without the need to first estimate

depth. As in the case of motion blur, the question becomes whether or not the combination

of increased light and deconvolution results in a net gain in MSE.

While several techniques have been developed to extend DOF, there is no way to com-

pletely remove depth-dependent blur from a camera with a finite aperture size. The best
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that can be done is to produce depth-independent blur over some depth range. Baek ana-

lyzed the tradeoff between MTF and depth-invariance [Baek, 2010]. He derived a bound on

the optimal tradeoff that can be achieved, and showed that that the focal sweep technique

is nearly optimal in simultaneously maximizing MTF and depth-invariance. Levin et al.

derived an approximate expression for the focal sweep MTF, as well as an upper bound on

the maximum MTF that can be achieved regardless of the degree of depth-indpendence.

The approximate MTF for focal sweep (Hfs), and the upper bound for any technique (Hub)

are

‖Hfs(ωx, ωy)‖2 ≈ CA2
bα

2(ωx, ωy)

S2
d |ωr|2

Λ

(

ωx

Cρ

)

Λ

(

ωy

Cρ

)

, (5.102)

‖Hub(ωx, ωy)‖2 ≤ C3/2A3
b

Sd|ωr|
Λ

(

ωx

Cρ

)

Λ

(

ωy

Cρ

)

, (5.103)

where α(ωx, ωy) =
|ωr|

max(|ωx|,|ωy|) , which has values in the range [1,
√
2]. In this setting, the

range of depths is set by Sm, and the blur is depth invariant for depths that would otherwise

produce blur widths less than or equal to the maximum blur size bmax =
√
CAbSm/2.

The upper bound in Equation 5.103 is significantly larger than the focal sweep MTF

given by Equation 5.103. Levin et al. introduced the lattice focal lens, which comes clos-

est to achieving the upper bound in Equation 5.103. However, the technique does not

produce a depth invariant PSF, and therefore requires depth estimation in order to apply

deconvolution to captured images.

5.3.3.4 SNR Gain for Focal Sweep

The focal sweep technique creates a depth-independent blur by utilizing sensor motion

during exposure. The sensor is translated along the optical axis during exposure so that

the each object is in focus during at least one instant. In the setting analyzed here, the

depth range swept by the sensor is equal to the range of object depth in the scene.

We first simplify the expression for the focal sweep MTF by ignoring the effect of diffrac-

tion on the opened up aperture
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‖Hfs(ωx, ωy)‖2 ≤
CA2

b

S2
d max2(|ωx|, |ωy|)

. (5.104)

This upper bound will be tight when we open up the aperture much larger than the

baseline case. Then C is large and the new diffraction cutoff frequency becomes much larger

than the Nyquist frequency (i.e. Cρ ≫ Ω and Λ(
ωy

Cρ) ≈ 1). Equation 5.104 is a convenient

expression to work with analytically. However, it is important to keep in mind that the

upper bound becomes weak when C is small.

We observe that the max function can be broken into four quadrants which integrate

to the same amount, and that for the quadrant ωx > |ωy|, max(ωx, ωy) = ωx. We can

then change MSE so that the x integrand becomes [0, 1/2], and the y integrand becomes

[−ωx, ωx], and the MSE becomes

MSEfs ≥ 4σ2m

∫ 1/2

0

∫ ω′

x

−ω′

x

1

‖Hfs(ω′
x, ω

′
y)‖2

dω′
ydω

′
x, (5.105)

=
4σ2mS

2
d

CA2
b∆

2

∫ 1/2

0

∫ ωx

−ωx

ω′2
xdω

′
ydω

′
x, (5.106)

=
32σ2m
CA4

b

∫ 1/2

0
ω′3

xdω
′
x, (5.107)

=
σ2m

2CA4
b

(5.108)

(5.109)

The multiplexing gain for focal sweep is then

Q2
fs ≤ 2C

(

ρ

ρ− Ω

)2 σ2s
σ2m

(5.110)

The SNR gain for focal sweep equal to the SNR gain for 1D motion invariant photogra-

phy, weighted by a diffraction dependent term. When diffraction can be ignored, the two

expressions are identical. As a result, the optimal increase in aperture area, the optimal

increase in exposure time for motion invariant photography, and the optimal row sum for

multiplexing are all equal to the same value Cmax given in Equation 5.48. The upper bound

on the SNR gain for focal sweep is
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Q2
fs ≤

(

2 +
2σ20
J

)(

ρ

ρ− Ω

)2

. (5.111)

For focal sweep, the SNR gain is always greater than
√
2. However, the amount greater

than
√
2 decreases when either the amount of diffraction or the signal level increases. The

bound significantly reduces the space of imaging scenarios that will give the desired mul-

tiplexing gain. In this case, when using the Canon Mark II, it is not possible to achieve a

multiplexing gain greater than 3 if the non-multiplexed signal level is greater than 32e−.

5.3.3.5 DOF Extension for Focal Sweep

In the previous section we asked what the SNR gain will be for an EDOF system, relative

to a stopped down camera, when considering a fixed range of depths. Now we ask instead

what is the maximum extension in DOF we can achieve for an EDOF system, while at the

same time ensuring that SNR is not less than a stopped down camera. We increase the

depth range dmax − dmin by a factor of Mfs so that the parameter Sd also increases by a

factor of Mfs. Then the bound on the focal sweep MTF becomes

‖H ′
fs(ωx, ωy)‖2 ≤ CA2

bα
2(ωx, ωy)

M2
fsS

2
d |ωr|2

, (5.112)

and the multiplexing gain becomes

Q′2
fs ≤ 2

C

M2
fs

σ2s
σ2m

, (5.113)

and enforcing the constraint that the SNR gain Q′
fs is greater than one gives the upper

bound on the DOF extension

Mfs ≤ Qfs. (5.114)

This result is slightly different than the result for motion invariant photography. Here

the upper bound on the increase in DOF Mfs for focal sweep is equal to the bound on the
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SNR gain (not the square of the SNR gain). The difference here is due to the fact that

the amount of light for the focal sweep system is proportional to the aperture area, which

is proportional to the square of the DOF. In this case, Equation 5.111 gives a bound on

both the maximum SNR gain that can be achieved for a fixed range of depths, and the

maximum increase in the range of depths that can be achieved for a fixed SNR. The upper

bound is always greater than one for all signal levels. When diffraction effects are negligible,

the bound approaches
√
2 for large signal levels so that both the maximum SNR gain and

DOF extensions become equal to
√
2. The bound increases when the amount of diffraction

decreases, which happens when the F/# for the stopped down camera becomes much larger

than the ratio between the pixel size and the wavelength of light.

5.3.3.6 Focal Sweep Summary

We summarize the results for focal sweep by considering two different scenarios that demon-

strate the effect of diffraction on the SNR gain. In the first scenario, we assume that

the diffraction cutoff frequency for the stopped down camera is twice the cutoff frequency

(ρ ≥ 2Ω). This implies that for the stopped down camera, F/# = ∆/λ. For instance,

assuming a pixel size of 4µm and a center wavelength of λ = .5µm, the F/# is then F/8.

When this is the case, for large signal levels, the DOF extension for the focal sweep tech-

nique can be no greater than a factor of 2
√
2. Thus, when the signal is large, the absolute

best we can hope to do with focal sweep without decreasing the SNR below the stopped

down camera is to open up the aperture to F/2.8. This is a reasonably large extension

in DOF. However, we point out that in order to derive this bound, we accounted for the

effects of diffraction in the uncoded measurement, but not the coded one. Thus, the ac-

tual amount we will be able to open up the aperture will be less than F/2.8. A numerical

simulation taking into account diffraction in the multiplexed measurement found that the

optimal aperture setting to be F/3.5 instead of F/2.8.

When the diffractive blur is large for the stopped down camera, the benefit of focal

sweep is large enough to be attractive. However, the benefit decreases significantly when

the diffractive blur decreases. For instance, consider the case when the diffraction cutoff

frequency is at least four times the cutoff frequency (ρ ≥ 8Ω). This implies that for the
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stopped down camera, F/# > ∆/(2λ). Then, assuming we have larger 16µm pixels, the

F/# remains at F/8. The DOF extension for the focal sweep technique can then be no

greater than a factor of 8/7 ·
√
2 ≈

√
2. In this scenario, when the signal is large, the

absolute best we can hope to do with focal sweep without decreasing the SNR below the

stopped down camera is to open up the aperture to about F/5.6. This is a relatively

marginal improvement that most likely will not warrant the effort required in implementing

the EDOF technique.

Since the focal sweep technique is nearly optimal in simultaneously maximizing MTF

and minimizing PSF invariance, we expect that this is the best possible DOF extension

without requiring depth estimation. Thus, we expect Equation 5.111 to summarize the

best possible performance of any EDOF technique that does not require depth estimation,

including the diffusion coding technique discussed in Chapter 2 and spectral focal sweep

technique discussed in Chapter 3. However, note that the previous two examples illustrate

the best possible performance when signal levels are large. The focal sweep technique

will have maximum performance advantage for small signal levels. In this case, the DOF

extension can increase significantly beyond the performance described in the previous two

paragraphs. We also reiterate a point made in Section 5.3.3.2: when the diffraction cutoff

frequency is larger than the Nyquist frequency (ρ > Ω), the only available option for

maintaining energy at all frequencies, while at the same time maintaining the desired DOF,

is to use an EDOF technique. This is a particularly important problem when considering

cameras with small pixel sizes that have large Nyquist frequencies.

As in the case for motion invariant photography, the upper bound here has been derived

under the assumption that the range of object depths are distributed uniformly. It is of

course possible to imagine scenarios where prior information on the distribution of object

depths is known, in which case a depth invariant MTF is no longer optimal, and the upper

bound in Equation 5.110 is no longer valid.

5.3.3.7 SNR Gain for Optimal Defocus Coding

We use the 4D light field parameterization to analyze light propagating through lenses.

However, neglecting the effect of occlusions and highly specular reflectances, the light field
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produced by a set of image points focused at different depths is parameterized by only

3D spatial coordinates. Interestingly, this 3D subspace corresponds to a 3D manifold in

4D Fourier Space [Ng, 2005] [Levin et al., 2009]. When a camera maximally preserves

energy along this 3D manifold, it also maximizes the MTF that can be achieved across a

range of depth values, giving an upper bound on the MTF Hub. We emphasize that the

upper bound Hub is the maximum possible MTF that can be achieved while maximally

distributing energy along the focal manifold, regardless of the degree of depth-invariace.

For instance, for the lattice focal lens, which comes closest to the upper bound, produces a

highly depth-dependent blur [Levin et al., 2009]. We may therefore consider Hub as a weak

upper bound for depth-invariant cameras. On the other hand, Hub is a tight upper bound

on the maximum MTF that can be achieved over a range of depths when depth is known

a-priori.

The lower bound on the MSE for any camera imaging over a range of depths is then

MSEub ≤
σ2Sd

C3/2A3
b∆

∫ 1/2

−1/2

∫ 1/2

−1/2

√

ω′2
x + ω′2

y dω
′
xdω

′
y (5.115)

=
σ2Sd

C3/2A3
b∆

√
2 + sinh−1(1)

6
(5.116)

<
σ2Sd

2C3/2 ·A3
b∆

2
. (5.117)

The best possible SNR gain for any camera optimized over a range of depths is then

Q2
ub ≤

MSEdb

MSEub
. (5.118)

=
2C3/2∆

AbSd

σ2s
σ2m

(

ρ

ρ−Ω

)

(5.119)

Under the assumption that the aperture is sufficiently large for the stopped down camera

that ρ > 2Ω, after substituting the expression for the noise ratio from Equation 5.39, the

bound on the SNR gain becomes

Q2
ub < 4C3/2 J + g2sσ

2
1 + σ20

CJ + C2g2sσ
2
1 + σ20

(5.120)
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This upper bound on SNR gain increases more rapidly with aperture size than focal

sweep. We can solve for the optimal increase in aperture size Cub by taking derivatives

Cub =
J +

√

12σ21σ
2
0g

2
s + J2

2g2sσ
2
1

(5.121)

≈ J

g2sσ
2
1

, (5.122)

where we have made the approximation based on the assumption that the signal is

sufficiently large so that J2 >> 12g2sσ
2
1σ

2
0 . Substituting Cub into the equation for the upper

bound gives

Q2
ub ≤ 2

J + g2sσ
2
1 + σ20√

Jgsσ1
. (5.123)

Again, assuming the signal is sufficiently large, J ≫ g2sσ
2
1 + σ20, and the SNR gain

becomes

Q2
ub ≤ 2

√
J

gsσ1
. (5.124)

Since we need to increase the gain to avoid saturation as the signal level increases,

the expression in the numerator increases also, until the maximum gain level is reached.

Substituting the expression for camera gain from Equation 5.36, the SNR gain becomes

Q2
ub ≤ 2

ADU

σ1D
√
J
. (5.125)

So, once the once the signal level is large enough so that photon noise dominates read

noise, the bound on the SNR gain actually decreases monotonically with increasing signal

level until the signal saturates. Unless the dynamic range is exceptionally large, the bound

will always be larger than one. For instance, we consider the case when D = 8, which

is a typical value for natural images. Then, if a Canon 1D Mark II is used, the signal

will saturate when J = 10, 000e−. The read noise at the largest camera gain setting is

gsσ1 ≈ 30.6e−, so the SNR gain would be Qub < 2.5 for a saturated signal.
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5.3.3.8 Upper Bound on DOF Extension

Following the same procedure as in Section 5.3.3.5, we find that for a DOF extension of

Mub that does not sacrifice SNR,

Mub ≤ Q2
ub. (5.126)

Thus, Equation 5.124 gives an upper bound on both the maximum squared SNR gain,

and the maximum DOF extension that can be achieved with any technique. This upper

bound applies to all EDOF techniques, including both techniques that do and do not require

depth estimation. The MTF for the lattice focal technique from Levin et al. comes close

to the upper bound in Equation 5.124, but it requires depth estimation, which propagates

errors in the deconvolution process that increase the MSE and reduce the SNR gain.

5.3.3.9 EDOF Upper Bound Summary

In summary, The upper bound on the SNR gain for any EDOF technique given by Equation

5.124 is clearly greater than the upper bound for focal sweep given by Equation 5.110.

Therefore, an EDOF technique that comes close to the upper bound, such as the lattice

focal lens, will maintain a performance advantage even at larger signal levels. However, the

focal sweep is near optimal at maximizing MTF and depth-invariance. We therefore expect

that an EDOF technique which comes closer to the bound given by Equation 5.124 will

require depth estimation, and errors in the estimation will effectively reduce the SNR below

this bound.

5.4 Conclusion

In Section 5.2 we found a bound on the maximum SNR gain that any multiplexing technique

can achieve. In Section 5.3 we found bounds for motion invariant and EDOF techniques.

The performance of all these techniques depends on the signal level. At small signal levels,

all techniques do well. At large signal levels, the SNR gains approach a maximum. We

summarize the results in Table 5.1, where we show the upper bound on the performance at

large signal levels for all techniques.
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SNR Gain Extension

Multiplexing G ≤ 1 -

1D Motion Invariant Q1D <
√
2 M1D <

√
2

2D Motion Invariant Q2D <
√

4/3 M2D <
√

4/3

Focal Sweep Qfs <
√
2 ρ
ρ−Ω Mfs <

√
2 ρ
ρ−Ω

EDOF Upper Bound Qub <
√
2 J1/4√

gsσ1

ρ
ρ−Ω Mub < 2

√
J

gsσ1

(

ρ
ρ−Ω

)2

Table 5.1: The SNR gain for several techniques at large signal level. From top to bottom,

the techniques are multiplexing, 1D motion invariant photography, 2D motion invariant

photography, focal sweep, generalized EDOF. The middle column shows the SNR gain, and

the right column shows the motion extension for motion invariant photography, and the

defocus extension for focal sweep and generalize EDOF.

Summarizing Table 5.1, there is no SNR gain for multiplexing techniques. The maximum

SNR gain for 2D motion invariant photography is only
√

4/3. This means that any extension

of motion for 2D motion invariant photography will be negligible if the SNR gain is at least

one. It is possible to get a rather negligible SNR gain or motion extension of
√
2 for 1D

motion invariant photography, but this requires motion to be restricted along a line.

Analyzing the performance of the EDOF techniques is slightly more complicated. When

the effects of diffraction can be ignored, the SNR gain and DOF extension for focal sweep is
√
2, which is negligible. This happens when the diffraction cutoff frequency is much larger

than the Nyquist frequency, which only occurs when the F/# is much smaller than the ratio

of the pixel size to the wavelength of light. Since focal sweep is near optimal at maximizing

MTF and depth invariance, we expect that the performance of focal sweep is an upper

bound on any depth-invariant technique. The performance can be significantly increased

if the EDOF technique is allowed to exhibit depth-dependence, as indicated by the EDOF

upper bound, which outperforms focal sweep at all signal levels.
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5.4.1 Signal Levels and Lighting Conditions

While the performance of most coding techniques reaches a threshold at large signal levels,

the performance is always greater at smaller signal levels. The reason is that the amount of

photon noise decreases at smaller signal levels so that read noise dominates in the non-coded

measurement. Assuming a read noise value of σ0 = 4e−, which is a typical value for today’s

high quality CMOS sensors, the upper bounds in Table 5.1 are correct to within four percent

when the signal is greater than 100e−. To give an idea of what lighting conditions will result

in a signal of J = 100e−, we derive the relationship between illumination irradiance and

the number of photons collected by a pixel.

For convenience, we will work with photometric units, which are equivalent to radiomet-

ric units weighted by the spectral response of the standard human observer S(λ). This will

allow us to derive an expressions for the number of photons collected by a pixel in terms of

standard illumination conditions. Let us assume that the scene being photographed is lam-

bertian with reflectance R, and is lit by a source with illuminance Esrc. Then the luminance

of the object is

L =
R ·Esrc

π
. (5.127)

The illuminance falling on the detector is [Horn, 1986]

Edet =
1

4

1

F/#2
EsrcR. (5.128)

We assume that the detector spectral response V (λ) is matched to the spectral response

of the standard human observer S(λ). For most color cameras, this will be the case for the

luminance channel of captured images. Letting the quantum efficiency of the detector be

η, the irradiance collected by the detector in Joules/m2/s is

Idet =
1

680 lumens/watt

1

4

1

F/#2
EsrcRη. (5.129)
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The energy in Joules of a single photon is given by h̄c/λ, where h̄ is Planck’s constant,

and c is the speed of light. Assuming a mean wavelength of λ = .55µm, the energy per unit

photon collected by a pixel can be approximated as

h̄c

λ
≈ 3.6 ∗ 1019. (5.130)

The irradiance in photons/µm2/s is then

Iphoton ≈ 104
1

F/#2
EsrcRη. (5.131)

So that for a pixel with area ∆2 in µm2 and exposure time t seconds, the total number

of photons collected is

J ≈ 104
1

F/#2
EsrcRη∆

2 t. (5.132)

As the F/# is increased, and the aperture is stopped down, the number of photons

collected by a pixel decreases. However we typically don’t allow the F/# to increase so that

the diffraction cutoff frequency increases beyond the Nyquist frequency. The minimum

number of photons collected then occurs when the diffraction cutoff frequency and the

Nyquist frequency are equal, which means that F/# = 2∆/λ. The minimum photon count

is then

Jmin ≈ 104
λ2

4
EsrcRη t. (5.133)

Typical illumination conditions and the corresponding photon counts are shown in Table

5.2. In the last column, we calculate the photon count assuming a reflectivity of R = .5, and

a quantum efficiency of η = .5 (typical of a high quality sensor). The number of photons

increases with exposure time, but we assume that the camera should be able to operate at

video rates, which limits the maximum exposure time that can be used. Here we use the

maximum exposure time that will achieve video rates, which we assume to be t = 1/50
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seconds. From the table, we can see that even for very weak illumination conditions (living

room lighting), the largest possible F/#, and the longest possible exposure time, enough

photons are collected so that the bounds in Table 5.1 are correct to within nearly four tenths

of one percent.

lumens/m2 photons/µm2/s photons

Starlight 10−4 5 < 1

Full Moon 1 5 ∗ 104 19

Living Room 50 2.5 ∗ 106 965

Office Lighting 4 ∗ 102 2 ∗ 107 7.7 ∗ 103

Overcast Day 103 5 ∗ 107 1.9 ∗ 104

Daylight 104 5 ∗ 108 1.9 ∗ 105

Direct Sun 105 5 ∗ 109 1.9 ∗ 106

Table 5.2: Lighting conditions and their corresponding illuminance in terms of photon

counts. The left-most table shows typical illuminance values in lumens/m2 for different

lighting conditions. The center column shows the same values in terms of photons/µm2/s.

The right column shows the photon counts calculated using Equation 5.133 assuming a

reflectivity of R = .5, quantum efficiency of η = .5, and exposure time of t = 1/50 seconds.

Even for living room lighting conditions, enough photons are collected so that the bounds

in Table 5.1 are correct to within four tenths of one percent.

5.4.2 Discussion

In Chapter 1 we discussed that computational imaging systems offer advantages in terms of

increased functionality and performance. In chapters 2 and 3, we introduced new techniques

to provide increased functionality in the form of computationally extending DOF. However,

this work left many questions open about the performance advantages of computational

imaging systems. In this chapter, we have introduced a comprehensive framework for an-

alyzing the performance of a large class of computational imaging systems. We used this

framework to derive performance limits for a variety of computational imaging techniques.
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The analysis in this chapter provides insight into the scenarios where a computational

technique provides a performance advantage. However, the analysis itself is somewhat re-

strictive, and it should be understood that there are some limitations to the conclusions

that can be made. We have used the MSE as a metric to quantify errors in the decoding

process of computational imaging systems. We have also assumed a linear decoding process.

A linear decoding process makes the MSE a convenient measure because analytic calcula-

tions, such as the bounds derived in Sections 5.2 and 5.3, become tractable. However, a

linear decoding process is not always optimal, and MSE is not always the best measure of

performance.

5.4.2.1 Image Priors

In many cases, we have access to useful information prior to performing the decoding process

that is useful in reducing decoding errors. For instance, in Chapters 2 and 4, we took

advantage of the fact that the distribution of Fourier spectra for natural images decays

rapidly with increasing spatial frequency. This property is also closely related to the fact

that the distribution of gradient magnitudes of natural images also decays rapidly. Both

of these properties have been exploited to increase the accuracy of the decoding process

[Levin et al., 2007] [Zhou and Nayar, 2009] [Cho et al., 2010]. In some cases, the decoding

process is still linear, in some cases it is not. However, in either case, it no longer becomes

analytically tractable to calculate the MSE.

Prior information on the distribution of the class of input signals provides information

on how compactly signals can be represented. The concept of an image prior is general-

ized by the concept of sparse modeling and compressed sensing. In compressed sensing, we

operate under the assumption that measured signals can be represented as a sparse set of

coefficients in some prior basis. This assumption works well when the signal coefficients in

the prior basis decay rapidly. Then the signal can be reconstructed faithfully from only a

small set of the coefficients. For instance, natural images are typically sparse in the Haar

Wavelet basis. When the assumption of sparsity is correct, a non-linear reconstruction

technique can be used to decode captured images with better performance than a linear re-

covery process. Compressive imaging systems have been developed for a variety of imaging
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modalities, including superresolution [Marcia and Willett, 2008] [Duarte et al., 2008], imag-

ing spectrometry [Wagadarikar et al., 2009] [Wagadarikar et al., 2008], space-time volumes

[Reddy et al., 2011] [Hitomi et al., 2011], 3D measurements of transparent objects [Gu et

al., 2008], and light transport matrices [Peers et al., 2009]. However, the non-linearity in

the recovery process makes it difficult to compare the performance of a compressive imaging

technique to a non-compressive one.

While the bounds derived in Sections 5.2 and 5.3 are only strictly applicable to the case

when a linear decoding process is used, we do expect that they will still be strongly infor-

mative in all cases. The reason is that, in our analysis, we have compared the performance

of coded and uncoded imaging systems. While the multiplexed performance will certainly

improve when image priors are taken into account, the non-multiplexed performance will

improve also. The question becomes: “what will the ratio of performance improvement

be?”. This is a very deep question that depends strongly on the amount of sparsity, the

prior basis, and the multiplexing matrix, and is therefore difficult to make generalizations

about. One approach may be to use the coherence between the prior basis and the mul-

tiplexing matrix as a performance metric, since the quantity bounds the MSE. Then the

performance could be quantified in terms of the sparsity of the signal. The bounds derived

in Sections 5.2 and 5.3 would hold for non-sparse signals, and the bounds would increase

with increasing sparsity (i.e stronger image priors).

5.4.2.2 Limitations of the MSE Metric

To quantify the quality of a decoded image we need a single representative value that takes

into account all the errors in a recovered image. In reality each pixel will have a different

error and we will have a distribution of errors in our recovered image. When we use the MSE

to calculate the performance, we choose the mean error across all pixels as the representative

value. This may give us a biased result, particularly if there is a large variation in the error

at each pixel. For instance, if there just a few pixels with very large error, the average error

calculated by the MSE may be quite large, when in fact most of the image has been decoded

faithfully. In this case, the MSE will not be a desirable metric for evaluating performance.

Other metrics, such as the L1 norm, would be more suitable in this case. The L1 norm
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would choose the median error as the representative value instead of the mean. Since the

median is more robust to outliers, this performance metric would eliminate bias created by

small groups of pixels with large errors.
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Chapter 6

Conclusions on the Computational

Imaging Advantage

In this thesis we have given a thorough analysis of computational imaging systems. In

Chapter 1, we established that the general goal of any imaging system is to capture a slice

of the plenoptic function. Conventional cameras are extremely limited in the way they

can sample the plenoptic function. In contrast, computational cameras open up a world of

possibilities by allowing for more flexible sampling strategies. We can use computational

cameras to estimate depth, or correct for geometric distortions in the lens. We can also

use a computational approach to measure more of the plenoptic function at once – we can

capture hyperspectral volumes, space-time volumes, and light fields with just a 2D sensor.

We can also create a many to one mapping between plenoptic samples and pixels, such as the

blur produced by defocus blur and geometric aberrations, which were studied extensively

in Chapters 2, 3, and 4.

In Chapters 2, we introduced the diffusion coding technique for capturing Extended

Depth Of Field (EDOF) images. The technique works by placing a radially symmetric

diffuser inside the aperture of a lens. The diffuser codes the light propagating to the sensor

in such a way that blur becomes depth-independent. The result is that an EDOF image

can be recovered by deblurring without the need for depth estimation. Diffusion coding

produces nearly identical performance to the most optimal EDOF technique known today:
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focal sweep. However, focal sweep requires the use of moving parts, while diffusion coding

does not.

In Chapters 3, we introduced the spectral focal sweep technique for capturing EDOF

images. This technique uses a lens that has intentionally not been corrected for chromatic

aberrations. These aberrations produce a focal length that is dependent on wavelength,

essentially imaging onto multiple focal planes simultaneously. When objects with broadband

reflectance spectra are imaged through a spectral focal sweep lens onto a black and white

sensor, the captured images exhibit depth-independent blur in a manner that is identical to

a focal sweep camera. Spectral focal sweep enables EDOF images to be captured without

the use of moving parts, and at the same time reduces lens complexity. While the technique

works best when reflectance spectra are perfectly broadband, it works well for more general

scenes that consist of naturally occurring reflectance spectra.

In Chapter 4, we introduced the gigapixel computational imaging technique for compu-

tationally increasing optical resolution. Increasing the optical resolution of a camera is a

challenging problem because resolution is fundamentally limited by geometric aberrations.

Conventional cameras stop down the lens aperture to reduce the amount of aberrations, but

this increases the amount of diffractive blur, which forces camera size to increase. On the

other hand, some aberrations can be removed via deblurring without significantly reduc-

ing image quality. We showed that, by taking a computational approach, high resolution

cameras can be built with a very compact size, and a very simple lens.

Chapters 2, 3, and 4 introduced three new coding techniques. For each technique, we

compared the performance of our computational imaging implementations to convention

cameras wherever applicable. However, the comparisons were limited to a few imaging con-

ditions, and did not give conclusive answers about the performance over all possible imaging

conditions. This led us to pursue a deeper analysis on the limits of computational imaging

systems in Chapter 5. Here we considered computational imaging systems that use coding

to increase optical efficiency. From a naive perspective, an increase in optical efficiency

translates directly to an increase in performance, since it increases the signal strength of

captured images. However, an increase in optical efficiency does not always translate di-

rectly to an increase in performance. To properly analyze performance, we must take into
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account a detailed noise model that takes into account signal dependent noise. We also must

take into account the conditioning of the imaging system. In Chapter 5, we analyzed a wide

variety of computational imaging techniques using the general imaging model introduced

in Chapter 1, including general multiplexing techniques that code information by masking

light, as well as fully efficient, shift invariant techniques that code for invariance.

6.1 Tradeoffs in Computational Imaging

Tradeoff Where Discussed

Efficiency vs. Functionality Sections 2.1, 3.1, and 4.5

Best vs. Average Performance Sections 2.1 and 3.1

Resolution vs. Scale Section 4.7

Performance vs. Complexity Sections 3.1 and 4.9.3

Table 6.1: Tradeoffs in computational imaging. Each tradeoff is listed along with the

corresponding sections in this thesis where the tradeoff is discussed.

Looking closer at the coding techniques in Chapters 2, 3, and 4 led us to a number

of tradeoffs that reappeared throughout this thesis (see Table 6.1). Perhaps the most

significant tradeoff we saw was between optical efficiency and functionality. In Chapters

2 and 3, functionality came in the form of increased DOF. In Chapter 4, functionality

came in the form of increased optical resolution. We saw a tradeoff between best case and

average case performance for EDOF systems. Our EDOF systems attempt to maximize

the performance averaged over a range of depths, which prevents them from achieving

the best possible performance at a single depth. In Chapter 4, we saw that functionality,

performance, and complexity are closely interlinked. We explored the tradeoff between

resolution and camera scale, and we said that simpler optics could be used to increase

resolution, but at the cost of decreased performance. This led us to further investigate

the relationship between performance and complexity. We said that complexity has a cost

associated with it, and the cost of increased complexity is not always warranted by the
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achieved performance gain. In Chapter 3, we introduced the spectral focal sweep camera,

which extends DOF by reducing the complexity of the lens. We used a simple lens to

increase DOF, but the cost was reduced color imaging performance. In Chapter 4, we

explored the tradeoff between complexity and resolution in the context of spherical optics.

We saw that there is a law of diminishing return – an increase in complexity does not always

result in an equal increase in performance.

6.2 The Limits of Computational Imaging

In Chapter 5, we analyzed the performance of computational imaging systems using a

detailed noise model, and the conclusions were somewhat surprising. The lighting conditions

must be extremely dim in order to achieve a performance advantage for a computational

technique. For instance, if the lighting conditions are similar to a typical living room, the

best possible SNR gain for a multiplexing technique is only a fraction of a percent. When the

lighting conditions are similar to the light cast by a full moon, the best possible SNR gain

is only forty percent. This has significant implications for computational techniques that

capture hyperspectral volumes, color images, light fields, coded aperture defocus deblurring,

and shuttered motion deblurring. In general, we see that these techniques are only useful

when the average signal level of captured images is about the same as the read noise.

This is only the case when the lighting conditions are extremely dim. In all other cases, a

conventional imaging technique will perform at least as well, regardless of the efficiency of

the computational imaging system.

We also saw some surprising results for the performance limits of techniques that code for

invariance. We saw that the performance limit for 1D and 2D motion blur is only marginally

better than for multiplexing techniques. We therefore draw the same conclusion that any

motion invariant technique is only useful when the average signal level of captured images

is about the same as the read noise. The performance of EDOF systems is not quite as

straightforward to analyze. When we ignore diffraction, the performance of techniques that

produce a depth-invariant PSF is the same as for 1D motion blur. We see a performance

advantage of about forty percent at large signal levels, and the advantage increases when
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the average signal level is about the same as the read noise. However, when we take

diffraction into account, the performance advantage can become significant, depending on

the combination of F/# and pixel size. In some cases, the only way to extend DOF and also

preserve information at all spatial frequencies is to use a computational technique. When

we remove the restriction that the PSF must be depth-invariant, the performance limit

significantly increases, and it becomes possible, in theory, to achieve a significant increase

in performance even at very large signal levels. However, when the PSF is depth-dependent,

it is necessary to perform depth estimation before deblurring, and errors in the estimation

will reduce performance.

6.2.1 Measuring Performance

The conclusions drawn from the analysis on performance limits from Chapter 5 may seem to

be largely negative, but we should keep in mind the assumptions made in the analysis before

we develop strong convictions about the benefit (or lack thereof) of computational imaging

as a whole. At first glance, it may be tempting to conclude that computational imaging

rarely has any performance benefit. However, we should keep in mind that we have used

MSE as a performance measure. The MSE metric is biased towards error measurements

that are evenly distributed. When error measurements are widely distributed, large errors

in a few measurements will strongly penalize performance.

In essence, the MSE is implicitly making assumptions about the imaging model. When

images have a large dynamic range, photon noise is large for a small number of pixels.

The MSE for these images will be large even though the errors are concentrated at a

few measurement locations. The MSE may indicate that a computational technique will

not have a performance advantage, when in fact, this will not be not be true for most

measurements in the image – the error might be greater at a few pixels but significantly

less at most pixels. The difficulty in using MSE as an error metric is that it gives large

importance to a few errors that may have little importance.

At the end of the day, if we want a metric to compare performance across different

measurement strategies, we need a way to represent the error at each pixel using a single

number. The MSE is a convenient metric because, in many cases, it simplifies analysis.
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Other metrics may be less biased, and consequently may result in different conclusions

about the performance limits of computational imaging techniques.

The other important drawback of the performance analysis in Chapter 5 is that it

assumed only linear inversion techniques. This excludes the use of non-linear reconstruction

techniques that use image priors to improve performance. However, we do need to keep in

mind that priors apply equally to images captured by both conventional and computational

cameras, so we do not expect that priors will have a dramatic impact when comparing

performance. More precise conclusions will require specific information about the type of

prior and sampling method used. This is certainly a topic that deserves further attention.

There are a number of image prior models worth exploring further, including the sparsity

models discussed in 5, that may be lead to superior performance for computational imaging

methods.

6.2.2 Computationally Increasing Efficiency

In this thesis, we have focused on techniques that produce a many-to-one mapping between

the input signal and pixel measurements. This was central to the performance analysis of

Chapter 5. It was also a critical part of the coding schemes introduced in Chapters 2 3, and 4.

One general conclusion of this thesis is that we need to maintain a healthy skepticism when

considering the efficiency benefit that results from a many-to-one mapping. As we’ve seen

in this thesis, the decoding process can cause a surprisingly large decrease in performance.

We have given a thorough treatment of sampling the plentopic function, paying spe-

cial attention to techniques that encode signals using multiplexing and shift invariant blur.

However, there are many applications of computational imaging that do not require a many-

to-one mappings such as this. In Chapter 1, we discussed a general image model, where

signals are represented as coefficients in a representation basis. We can think of this ba-

sis as a type of image prior. The representation tells us what features embedded within

the plenoptic function are most useful to measure. When using a computational imaging

technique, we have the flexibility to adapt our sampling to measure these features directly,

without any explicit coding. This may be the greatest benefit of computational imaging sys-

tems. Not that we have the flexibility in sampling to make explicitly coded measurements
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that can be decoded offline, for, as we have seen, the decoding process can be problematic.

Rather, the crucial difference may be that we have the flexibility in sampling needed to

directly record implicitly coded measurements. In Chapter 1, we referred to this strategy

as “task-specific” imaging. From the task-specific perspective, we begin to ask the question

“what is the most efficient sampling strategy for measuring the specific features we are inter-

ested in?”. This is clearly related to compressive imaging techniques discussed in Chapter

1, where we attempt to recover a large number of signal coefficients from a small number

of pixel measurements. Both task-specific and compressive techniques focus on recovering

the desired signal from as few measurements as possible. This is a natural extension of

the computational imaging perspective, where we consider the imaging system as a channel

that transmits visual information. This discussion on efficient measurement techniques is

an interesting starting point for continued research on the topics covered in this thesis.
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Appendix A

Diffusion Coding Derivations

In this appendix, we give derivations for several equations that were provided in Chapter

2, which analyzed the diffusion coding technique.

A.1 Derivation for Diffuser with constant 2D Scatter Func-

tion

The first derivation we give is for the PSF of a Diffusion Coded camera with a constant 2D

scatter function, as described in Chapter 2. From Equation A.1, the kernel for this diffuser

is

d(u,u′,x,x′) =
1

w2
δ(u− u′) ⊓

(

x− x′

w

)

. (A.1)



APPENDIX A. DIFFUSION CODING DERIVATIONS 164

l′δ(u,x) =
∫

Ωu

∫

Ωx

1

w2
δ(u − u′) ⊓

(

x− x′

w

)

l′δ(u
′,x′)du′dx′ (A.2)

=
1

w2

∫

Ωx

⊓
(

x− x′

w

)

lδ(u,x
′)dx′ (A.3)

h′(x) =
1

w2

∫

Ωu

∫

Ωx

⊓
(

x− x′

w

)

lδ(u,x
′)dx′du (A.4)

=
1

w2

∫

Ωx

⊓
(

x− x′

w

)





∫

Ωu

lδ(u,x
′)du



 dx′ (A.5)

=
1

w2
⊓
(x

w

)

⊗ h(x) (A.6)

Which is the same result as Equation A.6, the result being that the effect of the diffuser

is to blur the image E that would be captured were it not present.

A.2 Radially-Symmetric Light Field Derivation

In this section we verify mathematically that Equation 2.10 represents the light field of a

unit energy point source. The equation for the light field is

lδ(ρ, r) =
4

πA2
⊓
( ρ

A

) δ(r − s0ρ)

π|r| . (A.7)

In polar coordinates, the energy e of a light field is calculated by integrating over all

variables

e = π2
∫

Ωρ

∫

Ωr

lδ(ρ, r)|ρ|dρ|r|dr (A.8)

or equivalently

e = π

∫

Ωr

h(r)|r|dr, (A.9)
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where h(r) is the PSF resulting from the image of the point source lδ. The PSF for the

point source is

h(r) = π

∫

Ωρ

4

πA2
⊓
( ρ

A

) δ(r − s0ρ)

π|r| |ρ|dρ (A.10)

=
4

πs20A
2

1

|r|

∫

Ωρ

δ(r − ρ) ⊓
(

ρ

s0A

)

|ρ|dρ. (A.11)

The integral in Equation A.11 is just a convolution between ⊓
(

r
s0A

)

|r| and a delta

function. Thus, the resulting PSF takes the familiar shape of a pillbox with diameter s0A

h(r) =
4

πs20A
2
⊓
(

r

s0A

)

. (A.12)

The energy for the point source light field is then

e = π

∫

Ωr

4

πs20A
2
⊓
(

r

s0A

)

|r|dr (A.13)

=
4

s20A
2

−s0A/2
∫

s0A/2

|r|dr (A.14)

= 1, (A.15)

which verifies that the point source has unit energy.

A.3 Radially-Symmetric Diffuser Derivation

We now give a derivation for the PSF of a Diffusion Coded camera using the diffuser kernel

from Equation 2.14. The light field of a point source filtered by the radially symmetric

kernel is
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l′δ(ρ, r) = π2
∫

Ωρ′

∫

Ωr′

d(ρ, ρ′, r, r′)lδ(ρ
′, r)|ρ′|dρ′|r′|dr′ (A.16)

=
4π

A2

∫

Ωρ′

∫

Ωr′

δ(ρ − ρ′)
π|ρ′|

⊓( r−r′

w )

πw|r| ⊓
(

ρ′

A

)

δ(r′ − s0ρ
′)

π|r′| |ρ′|dρ′|r′|dr′ (A.17)

=
4

πA2
⊓
( ρ

A

) 1

w|r|

∫

Ωr

δ(r′ − s0ρ) ⊓
(

r − r′

w

)

dr′ (A.18)

=
4

πA2
⊓
( ρ

A

) ⊓( r−s0ρ
w )

πw|r| . (A.19)

The PSF for the light field filtered by this diffuser is

h′(r) = π

∫

Ωρ

l′δ(ρ, r)|ρ|dρ (A.20)

= π

∫

Ωρ

4

πA2

⊓( r−s0ρ
w )

πw|r| ⊓
( ρ

A

)

|ρ|dρ (A.21)

=
4

πA2w|r|

∫

Ωρ

⊓(r − s0ρ

w
) ⊓

( ρ

A

)

|ρ|dρ (A.22)

=
4

πs20A
2w|r|

∫

Ωρ

⊓
(

r − ρ

w

)

⊓
(

ρ

s0A

)

|ρ|dρ (A.23)

=
4

πs20A
2

1

w|r|

[

⊓
( r

w

)

⊗
(

⊓
(

r

s0A

)

· |r|
)]

, (A.24)

which is the same result as the PSF given by Equation 2.16.

A.4 Focal Sweep Comparison

In this section, we derive the expressions used to compare the focal sweep and a special

form of diffusion coding discussed in Section 2.8. First we derive the expression for the focal

sweep PSF given by Equation 2.22. For a point source located on the focal plane, s = 0,

and the focus sweep PSF can be written as

hfs(r) =
1

S

∫ S/2

−S/2

4

πs2A2
⊓
( r

sA

)

ds. (A.25)
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Using the change of variables s′ = sA, the PSF becomes

hfs(r) =
4

πSA

∫ SA/2

−SA/2

1

πs′2
⊓
( r

s′

)

ds′. (A.26)

=
8

πSA

∫ SA/2

0

1

πs′2
⊓
( r

s′

)

ds′. (A.27)

From the definition of the box function, ⊓
(

r
s′

)

= 1 when s′ ≥ 2|r| ≥ SA, which allows us

to rewrite the PSF as

hfs(r) =
8

πSA
⊓
( r

SA

)

∫ SA/2

2|r|

1

s′2
ds′ (A.28)

=
4

πSA

(

1

|r| −
4

SA

)

⊓
( r

SA

)

, (A.29)

which is the same expression given by Equation 2.22. We now show that the scatter function

given by Equation 2.28 results in the same PSF as focal sweep. We derive the diffusion

coding PSF from the light field given by Equation 2.29. For a point source located on the

focal plane, the PSF is

h′(r) = π

∫

Ωρ

l′δ(ρ, r)|ρ|dρ (A.30)

=
4

A2

∫

Ωρ

⊓
( ρ

A

) ⊓( r
S|ρ|)

πS|ρ||r| |ρ|dρ. (A.31)

Using the change of variable ρ′ = Sρ, the PSF becomes

h′(r) =
4

πS2A2|r|

∫ SA/2

−SA/2
⊓
(

r

|ρ′|

)

dρ′. (A.32)

=
8

πS2A2|r|

∫ SA/2

0
⊓
(

r

|ρ′|

)

dρ′. (A.33)

By definition, ⊓
( ρ
A

)

⊓ ( r
S|ρ′|) = 1 when 2|r| ≥ |ρ′| ≥ SA. This allows us to rewrite the PSF

as
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h′(r) =
8

πS2A2|r| ⊓
( r

SA

)

∫ SA/2

2|r|
dρ′. (A.34)

=
4

πSA

(

1

|r| −
4

SA

)

⊓
( r

SA

)

, (A.35)

which proves that, for point sources located at the focal plane, the diffusion coding and focal

sweep PSFs are the same. Although the analysis becomes a bit tricky, the same approach

can be taken to prove that the PSFs are the same at all depths.
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Appendix B

Gigapixel Computational Imaging

Derivations

In this appendix, we give derivations for several equations that were provided in Chapter 4,

which analyzed the performance of computational imaging systems that exhibit spherical

aberrations.

B.1 Appendix A: PSF Derivation

From Equations 4.8 and 4.11, the PSF produced by a lens with a monomial OPD is given

by

h(r) =

∫ ∞

−∞
⊓(ρ)δ(r − αρn)

π|r| |ρ|dρ (B.1)

(B.2)

We introduce a change of variables z = αρn, giving the relations

ρ =

( |z|
α

)1/n

(B.3)

dρ =
1

nα

( |z|
α

)1/n−1

dz. (B.4)
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After substitution, the PSF becomes

h(r) =
1

π|r|

∫ ∞

−∞
⊓
( z

α

)

δ(r − z)
1

nα

( |z|
α

)1/n ( |z|
α

)1/n−1

dz (B.5)

=
1

π|r|nα

∫ ∞

−∞
⊓
( z

α

)

δ(r − z)

( |z|
α

)2/n−1

dz (B.6)

=
1

π|r|nα ⊓
( r

α

)

( |r|
α

)2/n−1

(B.7)

=
1

πnα2/n
⊓
( r

α

)

|r|2/n−2. (B.8)

B.2 Appendix B: PSF Normalization

The energy for the PSF given in Equation 4.11 is

e = π

∫ ∞

−∞
Pr(r)|r|dr (B.9)

= π

∫ ∞

−∞

1

πnα2/n
⊓
( r

α

)

|r|2/n−2|r|dr (B.10)

=
1

nα2/n

∫ α

−α
|r|2/n−1dr (B.11)

=
1

nα2/n

[

n

2

r

|r| |r|
2/n

]−α

α

(B.12)

=
1

nα2/n

(

nα2/n
)

= 1. (B.13)

which verifies that the PSF is properly normalized,
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