
Spatial 3-D Infrastructure: Display-Independent Software
Framework, High-Speed Rendering Electronics,

and Several New Displays

Won-Suk Chun, Joshua Napoli, Oliver S. Cossairt, Rick K. Dorval, Deirdre M. Hall,
Thomas J. Purtell II, James F. Schooler, Yigal Banker, Gregg E. Favalora*

Actuality Systems, Inc., 25 Corporate Dr. Ste. 300, Burlington, MA USA 01803

ABSTRACT

We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays –
such as multiplanar, multiview, and electroholographic displays – naturally require different rendering methods. The
adoption of these displays in the marketplace will be accelerated by a common software framework. The authors
designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface.
SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL
supports legacy interfaces such as the OpenGL API. The authors’ first implementation of SpatialGL uses multiview
and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable
real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the
time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality’s high-
performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64
processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 × 768 × 3
digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality’s multiplanar Perspecta
Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-
sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

Keywords: 3-D display, API, volumetric, autostereoscopic, spatial light modulator, medical imaging, holographic

1. INTRODUCTION

There is an obvious and demonstrable need for true 3-D displays. Rapid improvements in contemporary sensor,
communication, storage, and computation technology enable the broad dissemination of an unprecedented wealth of
data to minds working in fields as diverse as oil and gas visualization, medical imaging, command and control, and
entertainment. In effect, the availability of data has far outstripped the capabilities of contemporary 2-D displays. The
constriction of the visual bottleneck will continue to increase due to the grossly incommensurate scaling between
information technologies and display technologies; 2-D display bandwidth has essentially reached a plateau.1

The practical obstacle to the rapid and universal adoption of 3-D displays is a uniform, stable foundation to build a
tenable spatial 3-D infrastructure. As long as 3-D applications continue to use legacy 3-D interfaces, they will fail to
exploit the full potential of 3-D displays. Not only is a new, true 3-D software interface necessary, but there must also
be a clear, simple, and universal transition path. We have built such a foundation. In this paper, we present not only the
end products of this foundation (displays and software applications), but the entire infrastructure itself.

The disparity of 3-D display technologies presented a considerable technical challenge to developing the spatial 3-D
infrastructure. In general, 3-D displays approximate a desired light field using any of a variety of techniques2, 3, 4, 5, 6,

* Primary contact: favalora@actuality-systems.com

such as volumetric, stereoscopic, multiview, and electroholographic projection. In particular, multiplanar and
multiview displays have radically different properties.

Multiplanar displays are volumetric displays that create images that actually occupy a region in space. Today’s
volumetric displays compose imagery of 1-100+ million voxels, or volume pixels. They may operate, for example, by
projecting patterned light onto a rotating7, 8 or reciprocating surface undergoing periodic motion.

Multiview displays project views to observers situated in one or more locations. Stereoscopic displays provide separate
images for the left-eye and right-eye, but historically, the term multiview has described displays showing more than two
views, such as nine, or 32. Unlike stereoscopic displays, autostereoscopic multiview displays do not assume that the
viewer is in a single location. Increasing the number of views of a multiview display increases the accuracy of the
projected light field. The limit of this approach is the hologram, which densely encodes views in the spectral domain.

2. SPATIAL 3-D CORE TECHNOLOGIES
We developed a novel architecture that unifies true spatial 3-D rendering under a single display-agnostic interface
called SpatialGL. We have designed our initial implementation, which comprises of both hardware and software
modules, to be as flexible as possible. We have adapted our custom hardware components in several disparate display
designs, including the Perspecta multi-slice display and the holovideo multi-view display. We have adapted the
software components to run on both our custom hardware and off-the-shelf PC hardware. In the latter configuration,
the software implements rendering algorithms for a 3rd party multi-view display.

Our spatial 3-D architecture includes:

1. a real-time compatibility layer to allow legacy applications to support a broad range of 3-D display devices
through an application- and display-agnostic dataflow design;

2. Spatial Visualization Environment, a 3-D rendering API and display virtualization layer that enables
application developers to universally exploit the unique benefits (such as true volumetric rendering) of 3-D
displays;

3. Core Rendering Software, a collection of high-performance rendering algorithms for a variety of 3-D displays;

4. Core Rendering Electronics, a motherboard that combines a best-in-class graphics processing unit (GPU)
with a high-performance 64-bit processor and double-buffered video memory to accelerate 3-D rendering for a
variety of high-resolution, color, multiplanar or multiview displays.

Figure 1: Typical display configuration using a host PC connected to a Perspecta display

A schematic illustration of a typical display configuration is shown in Figure 1. A host PC is connected to a Perspecta
display over single or dual gigabit Ethernet. The host PC executes a client application written with a 3-D API (e.g.
OpenGL or SpatialGL). This 3-D API provides an interface to the rendering server by converting rendering data and

commands into a SpatialGL stream. The Perspecta display interprets the
SpatialGL stream and renders digital volumetric images through a
combination of CPU and GPU algorithms. The Voxel Engine provides a
high-speed interface to projection optics to convert these digital images into
real, viewable image volumes.

Variations of the typical display configuration only require minor changes.
For example, different optics and GPU algorithms are used to make
Actuality’s holovideo display. Collectively, the common hardware
components comprise the core rendering electronics.

The software architecture has both client and server components. The client
component is called the Spatial Visualization Environment. It exposes the
features of SpatialGL in a portable way and provides a compatibility layer
for legacy graphics APIs. The server component is the Core Rendering
Software. It adapts existing rendering resources for spatial 3-D displays.

2.1. Compatability Layer
For the time being, most application software for 3-D displays will use an
established 3-D graphics API, such as OpenGL. The Spatial Visualization
Environment provides a compatibility layer that exports an OpenGL
interface implemented using SpatialGL. This layer works with legacy
applications that were written without special consideration for 3-D
displays. It also provides extended features for “ported applications” to
allow control of the special features of Spatial displays. As Spatial 3-D
display technology becomes accessible to new market segments, support for
additional APIs (such as Direct3D) will be added.

2.2. Spatial Visualization Environment
The Spatial Visualization Environment
provides a uniform abstraction of
graphics with 3-D displays. The
Spatial Visualization Environment is
broken into distinct API modules with
consistent nomenclature and
compatible objects. SpatialGL forms
the basis for representing graphical
assets and operations. SpatialGL is
designed to provide natural access to
the special features of 3-D displays,
with special emphasis on portability
between different 3-D display types
and volumetric rendering. The Volume
Manager provides a virtualization
layer to allocate and share rendering and display resources. It also provides mechanisms for interactive user feedback.

2.3. Core Rendering Software
The Core Rendering Software implements the Spatial 3-D Server. It provides the execution environment to run
rendering operations for the 3-D display. A major aspect of Core Rendering Software is a rendering framework that
allows new display types (with peculiar geometries) to take full advantage of the existing graphics accelerators. In the
design of the rendering framework, emphasis was placed on compatibility with a range of hardware architectures. Core

Figure 3: Software Architecture.

Figure 2: SpatialGL Pipeline

Rendering eases the development of high performance rendering paths by providing a reusable infrastructure. The
implementer need only address the specific details of the new display geometry. In conjunction with the Spatial
Visualization Environment, Core Rendering Software reduces the cost of integrating an emerging 3-D display
technology with standard APIs to the cost of implementing the required rendering algorithms.

The SpatialGL graphics pipeline, illustrated in Figure 2, is strongly modeled after the canonical 3-D graphics pipeline.
Conceptually, they are structured the same way. However, unlike the canonical 3-D graphics pipeline, the SpatialGL
graphics pipeline does not project the entire virtual scene onto a 2-D image surface. Instead, it divides the scene into a
sequence of slices.

The canonical 3-D graphics pipeline converts descriptions of 3-D objects and scenes into 2-D images. The goal of the
canonical 3-D graphics pipeline is to synthesize 2-D digital images that a camera would capture in a virtual scene
comprised of triangles. The basic operation is described as follows. An application passes geometry (described as
vertices) to a GPU through an API (e.g. Direct3D or OpenGL). The GPU maps these vertices into a view volume,
which is the region of space that can be seen by the virtual camera. The view volume is projected onto a 2-D surface
that represents the view of the camera. This surface is sampled to synthesize the final 2-D digital image output.

The triangle rendering pipeline has many advantages for real-time applications. Because it uses triangles as a rendering
primitive, all major operations can be performed using simple linear equations. Other primitives, such as points and
lines, can be rendered as triangles. Curved surfaces, can be approximated to an arbitrary degree of accuracy using
triangles. Each stage of the pipeline is itself highly parallel, encouraging extremely efficient hardware implementations
in GPUs.

Modern GPUs are now programmable. Instead of providing a small set of selectable rendering modes for each stage,
certain stages expose an instruction set to allow client applications to request arbitrary computations. This provides the
opportunity to tap a GPU as a general-purpose computation resource; essentially, the programmable stages are used as
highly parallel floating-point processors. The inexpensive, mass-market nature of video cards, as well as their
extremely steep performance growth, makes GPUs an attractive target for non-graphical computation9 or non-
traditional graphics algorithms such as SpatialGL.

2.4. Core Rendering Electronics
The Core Rendering Electronics
architecture supports Actuality’s
current generation of Spatial 3-D
displays. The Core Rendering
Electronics provides a host for the
Core Rendering Software within the
display. It unites a high-speed projector
driver with a main board that supports
a modern CPU and add-in graphics
card. This integration allows access to
the more capable rendering hardware,
as well as lower rendering latency than
previous hardware architectures for
Spatial 3-D displays. It answers the
needs of customers performing high-
end visualization by rendering at
interactive rates while driving a variety
of display geometries, such as
multiplanar and multiview.

The rendering electronics provide a
powerful and highly flexible
infrastructure to support Actuality’s

ATHLON
64

PC
I-X

VOXEL
ROUTER

FROM
HOST
(DUAL
GigE)

GRAPHICS
CARD
(GPU)

HT

TO GREEN
DMD

MAC
/PHY

8131
BRIDGE

PCI-X
8151

BRIDGE

A
G

P

HT

VOXEL
MEMORY

CTLR

DDR
SDRAM

TO BLUE
DMD

VOXEL
MEMORY

CTLR

DDR
SDRAM

TO RED
DMD

VOXEL
MEMORY

CTLR

DDR
SDRAM

2GB/s

3.2GB/s1.2GB/s

1GB/s

1GB/s 1GB/s 1GB/s

0.96GB/s0.96GB/s 0.96GB/s

DDR
SDRAM

Figure 4: Core Rendering Electronics

current generation of Spatial 3-D displays. The electronics communicates to the host through dual gigabit Ethernet.
The system imbeds an x86-64 chipset in a custom main board that includes a high throughput, high capacity volume
framebuffer (the Voxel Engine) with an interface to a high-speed projector. A COTS graphics card is installed in the
AGP slot. The projector is a high frame rate projector using three digital mirror devices (DMDs) of Texas
Instruments Digital Light Processing (DLP) technology.

As shown in Figure 4, a sequence of HyperTransport busses that link the x86-64 chipset form the backbone of the
Rendering Electronics. SpatialGL data and commands are delivered through the dual gigabit ethernet port. The chipset
transfers this information to the CPU’s RAM where the Core Rendering Software converts it to CPU and GPU
commands. The CPU is an AMD Athlon 64-bit processor.

The bulk of the rendering is performed by the GPU. The GPU renders the scene and formats the voxels for the Voxel
Engine. This post processed data is transferred to the CPU’s RAM. Uncompressed data for a 198 frame volume is
nearly 128MB, which means at an animation rate of 10Hz, the bandwidth required exceeds 1 GByte/sec. The
(published) bandwidth limitation in the path between the GPU and the CPU’s RAM is 2 GB/s.

The next step in the pipeline is transferring the data from the CPU’s RAM to the Voxel Router portion of the Voxel
Engine. As can be seen in the block diagram, the bottleneck in this portion of the pipeline is the PCI-X bus to the
Voxel Router. Applications requiring animations faster than 10Hz require compression of the data at the GPU.
Decompression is performed in the Voxel Engine. Various types of compression are supported, the choice of which
would be dependent on the application and the display geometry. The Voxel Router and Voxel Memory Controllers
each play a part in the decompression and sorting of the volumetric data into locations in SDRAM that are appropriate
for streaming the data to the display/projector.

The Voxel Router and each of the Voxel Memory Controllers are implemented in FPGAs. The design is intended to be
general enough to support virtually any type of 2-D or 3-D display. A synchronization module provides a highly
programmable interface to encoders, and the interface modules to the DLP projector are easily replaced with a modules
designed to support other display/projector types. As a result, this PCB can be used for a wide variety of applications
without any changes to the physical portion of the design.

Finally, note that the bus technologies used in this design were constrained by the chipsets and graphics accelerators
available at the time of the design of the PCB. Replacing the AGP and
PCI-X busses with PCI-Express will provide substantial improvements to
the 1 GB/s bottleneck and further simplify the pipeline.

3. APPLICATIONS OF FRAMEWORK TO VARIOUS 3-D
DISPLAYS

We applied the uniform software framework to a variety of displays,
including the Perspecta® Spatial 3D Display from Actuality Systems, a
COTS multi-view display from StereoGraphics, Inc., and an experimental
quasi-holographic video system.

3.1. Perspecta® Spatial 3-D Display v1.9 (Actuality Systems,
Inc.)
The framework’s rendering algorithms were tested on a multiplanar
volumetric display, the Perspecta Spatial 3-D Display, which was
developed by Actuality Systems. See Figure 5.

3.1.1. Display Geometry
Perspecta is described fully elsewhere.10,11 In summary, Perspecta
generates spatial 3-D imagery by projecting a sequence of 2-D patterns, or

Figure 5: The Perspecta Display creates
3-D imagery by projecting a sequence of
2 × 198 images onto a screen rotating at
or above 900 rpm (see text).

slices, onto a swiftly-rotating omnidirectional diffuser screen. Since an entire volume sweep is accomplished each 180
degrees of screen rotation, the 3-D image process proceeds as follows. As the screen spins, a first or “frontscan”
volume is swept entirely by the first 0-180-degree rotation, during which 198 slices are projected; during the second or
“backscan” sweep from 180-360 degrees, a second 198 slices are projected. The user’s persistence of vision fuses each
radially-distributed group of 198 slices into a full-parallax, accurate-focus, volumetric 3-D image that can be seen from
any angle. Although 396 slices are drawn, this is described as a 198-slice system, where each slice subtends slightly
less then 1 degree through the screen’s axis of rotation. Furthermore, the frontscan slices and backscan slices must be
aligned for a crisp and jitter-free image.

Rendering Algorithms for Multiplanar Display

Prior to the Core Rendering Electronics presented here, the slices were rendered by an embedded DSP. For geometric
scenes, such as those described by the OpenGL API, real-time performance was approximately 4,000 unfilled triangles
per second. Due to practical considerations, we did not implement texture mapping in Perspecta’s original software-
based rendering system. Customers in the fields of oil & gas visualization, medical imaging, and battlefield
visualization require extraordinarily high realism, speed, and functionality which is at least on par with their current
solutions. The software framework was developed to provide the benefits of contemporary video cards, such as texture
mapping and a high triangle rendering rate.

Computing the contents of Perspecta image slices is similar in some aspects to what a GPU already does. However,
instead of rendering a single view per 2-D image, the GPU must render 396 slices per 3-D image on Perspecta. Because
the screen is constantly spinning, and the high-speed digital projector strobes images for a brief duration, each slice
actually occupies a volume of space. To compute the image for a particular slice, we rendered the scene using the GPU
while setting the view volume to be the occupied by the slice. Usually, setting a projection matrix transformation or
writing a vertex shader program accomplishes this task. Unfortunately, the shape of the slice volume is not simple;
instead of being a convex volume, it crosses itself along the axis of screen rotation. It is impossible to specify such a
view volume in the usual ways.

One approach uses only the standard projection matrix transformation. It is impossible to specify the actual shape of
the slice volume this way, but it is possible to specify a view volume that tightly bounds the slice volume. The
bounding slice volume is a rectangular prism with near and far clip planes that are parallel to the slice plane, and whose
left, right, top and bottom clipping planes frame the left, right, top and bottom boundaries of the slice image. The result
is a thin orthogonal view volume, which is expressed as a projection matrix transform.

3.2. Quasi-holographic Highly Multiview Display
The software and electronics described here were also applied to a 198-view 3-D display capable of projecting aerial
quasi-holographic imagery with an image volume of approximately 30 mm × 25 mm × 25 mm.

3.2.1. Display Geometry
We produced an experimental view-sequential horizontal parallax only (HPO) aerial image display that projects bright,
30 mm × 25 mm × 25 mm (width × height × depth), green imagery with a horizontal viewing angle of approximately
15º and a large (120º+) vertical viewing angle. A single PC communicating with the Core Rendering Electronics and
custom holographic video rendering software produced the view-sequential imagery.

The server (display) operates as follows. For a given viewer distance, the 3-D scene is decomposed into a set of ray
trajectories, which modulate an XGA-resolution DMD at approximately 6,000 frames per second. A 532 nm diode-
pumped solid-state laser beam is conditioned and illuminates the DMD. The modulated light passes through a 1:1 relay
and variable spatial filter, and is scanned in the horizontal plane by a GSI Lumonics rotating mirror scanner which
oscillates at 30 Hz. The DMD modulation pattern is synchronized to the scanning motion. The imagery is magnified
and relayed by a series of off-the-shelf lenses, and comes to a vertical focus at a vertical diffuser (Physical Optics
Corp., Torrance, CA). The “horizontal focus” obviously varies throughout the depth of the 3-D scene, the center of
which should straddle the diffuser for optimal image quality. A viewer gazing at the diffuser perceives a sharp, 3-D

Figure 6: An illustration of (left) the ideal position
of a pixel seen by a moving observer, (center) inter-
view aliasing, and (right) the result of antialiasing
using bandlimiting. Technique and illustration as in
Halle13.

image in the vicinity of the diffuser. The system produces up to 198 beam trajectories, or views, per quasi-holographic
image. This large number of views results in an image with no perceived intra-view aliasing.

3.2.2. Rendering Algorithms
Each view is derived from synthetic cameras placed at regular intervals along a viewing extent. A projection matrix is
generated for each view based on the view’s synthetic camera position, viewing distance, and linear offset. The 3-D
model is perspective-transformed and rendered into individual tiles. Because the views can be tiled into a frame buffer,
the rendering of all tiles is performed on the video card in a single pass. Next, the views are assembled into a data
structure known as a spatio-perspective view volume. The slices are ordered according the to camera position used to
generate the slice view. Resampling a synthetic view volume generates the correct perspectives displayed on the
projectors. Before the frames can be uploaded to the DMD, they must be converted from 32-bit RGBA to 3-bit RGB.
This is accomplished by performing a dispersed-dot ordered dithering algorithm on each of the frames. Furthermore,
the color data is packed into the final DMD format that is required for loading into graphics memory.

3.3. Rendering for Multiview Displays
Without the appropriate software, the imagery produced by
multiview displays is subject to visual artifacts that occur for
stationary and moving observers. These artifacts include inter-
view aliasing (such as image features which jump
discontinuously between views), and intra-view aliasing (such
as texture aliasing and geometrical aliasing). Inter-view
aliasing occurs because of limited view sampling: each
rendered view represents a different view direction. Because
these directions diverge with distance, the image disparity
between two adjacent views can be severe. This rendering
artifact is particularly distracting because it is perceived as
sudden motion. This process has been studied by Michael
Halle.12,13

The software and hardware technologies described in Section 2 apply to 3-D displays made by any manufacturer whose
display driver can plug in to the SpatialGL API. An example of this is the SynthaGram™ display manufactured by
StereoGraphics Corporation (San Rafael, CA).14,15 The SynthaGram is a nine view lenticular auto-stereo display that
consists of a conventional TFT LCD and a precisely aligned lenticular sheet that converts the subpixels within a 2-D
image into ray information in the desired 3-D scene.

Several filtering techniques can be used to improve the image quality of multiview displays such as the SynthaGram.16
Three types of filtering are: spatial antialiasing (conventional antialiasing), inter-view color filtering, and inter-view
antialiasing. We implemented the first two filtering techniques and have produced good results. For example, color
artifacts are caused by sub-pixel sampling that the SynthaGram employs for efficient resolution division. One
technique to combat color artifacts is the inter-view weighted average filter. We employed this technique as shown in
Figure 9.

Further work will allow all three filtering techniques to be used simultaneously and integrated into a rendering pipeline
for implementation within the Core Rendering Software system. This allows application developers to utilize the
SpatialGL API to create applications which seamlessly provide content to a variety of 3-D displays without having to
write custom software for each target display.

The performance achieved thus far has been impressive. Using an ATI Radeon X800 graphics card, we were able to
render 117,240 indexed triangles at 60fps for unfiltered imagery, and 30fps for filtered imagery. The rendering speed
will be further reduced when inter-view antialiasing is introduced, but the rendering algorithms will be further
optimized to achieve maximum performance. It seems reasonable to expect that 30fps rendering speed can be achieved
while applying the three filtering techniques.

Figure 7: Actuality Systems, Inc.’s Perspecta® Display

Figure 8: Texture mapping in Perspecta

Figure 9: Photographs of the StereoGraphics SynthaGram
display. (Top) No filtering. (Bottom) Filtering, illustrating
attenuation of color artifacts.

Figure 10: Highly multiview aerial image projection

system

Figure 11: Stereo pair of wireframe cube image. View

crosseyed.

4. APPLICATONS OF SPATIAL 3-D
The previous release, Perspecta 1.7, allowed us to develop methods for enabling compatibility with legacy 3-D
applications through OpenGL API call interception and the display of true volume datasets using an NVIDIA GPU.
Spatial 3-D has been shown to significantly decrease the judgment time and increase the accuracy of time-critical
procedures in medicine17 and military visualization18. Also, it fosters rapid communication between team members of
differing backgrounds and familiarity with the 3-D information. These properties make Spatial 3-D a useful tool for
fields as diverse as medical imaging, oil and gas visualization, luggage and cargo scanning, and pharmaceutical design.

4.1. Perspecta Medical
The bulk of today’s digital medical image data are stored in a format compliant with the DICOM standard19, enabling a
variety of applications and displays to present computerized tomography (CT), magnetic resonance (MR), and
positron-emission tomography (PET) scans. A typical CT scan is a (256 pixel) × (256 pixel) × (200 to 2000-slice) 8-
to-16 bit dataset, where each voxel corresponds to the density of a roughly cubic millimeter-sized region of anatomy.

We developed a testbed for Spatial medical applications called Perspecta Medical. As shown in Figure 12, it is a
DICOM viewer which gives the user familiar anatomical slice views and a simultaneous Spatial 3-D projection. The
datasets were computed at interactive rates, in which volume resampling was performed by an NVIDIA GeForce 6800
Ultra GPU in a Dell desktop PC. The results of the computations were read back over PCI and over a 30 MB/s SCSI
link to a Perspecta 1.7 display. This is a clear illustration of the advantage of the GPU-based rendering. It accelerates
the preparation of a new view of the data set from many minutes (pre-GPU) to approximately 10 seconds.

Figure 12: Perspecta Medical allows medical researchers to load standard DICOM medical data, such as CT, MR, and
PET scans, for interactive viewing in 2-D and Spatial 3-D. The 2-D display presents traditional axial, coronal, and
sagittal cross-sectional views of the patient. The Spatial 3-D image can be zoomed and centered by clicking on the 2-D
application interface. (Public dataset available online from Philips Medical Systems.)

At the time of writing, Perspecta Medical has not been approved by the FDA and may not be used to prevent, diagnose,
or treat disease.

4.2. Oil and Gas Visualization
Geophysicists and geologists in upstream oil and gas exploration grapple with datasets which are enormous by today’s
standards, on the order of tens to hundreds of GBytes. The data depict information from several sources, including
seismic, “interpreted seismic” in the form of horizons, multiple drill paths, and data from probes sent down the wells.

The Perspecta Spatial 3-D System has been demonstrated with popular software packages such as Landmark Graphics’
GeoProbe and AssetView, as well as software we have developed for the visualization of seismic data and seismic
horizons.

5. CONCLUSION
We developed a software framework that can accelerate the adoption of advanced 3-D displays. The framework’s
major components are a real-time compatibility layer for legacy applications using APIs such as OpenGL, a spatial
visualization environment which provides a 3-D rendering API and display virtualization layer, and core rendering
software which is a collection of high-performance rendering algorithms for a variety of 3-D displays. We applied this
framework to three 3-D displays. Furthermore, we developed core rendering electronics, a reusable hardware
component which is designed to provide our customers with interactive-rate, texture-mapped 3-D imagery. Finally, we
report on progress in specific applications of Spatial 3-D visualization in the fields of medical imaging and oil and gas
visualization.

ACKNOWLEDGMENTS

The authors wish to thank the conference Chairs for the opportunity to present this work. Implementing technology of
this scope was a multidisciplinary team effort, and the authors gratefully acknowledge the contributions of: Sandy
Stutsman, David Aubin, and Jay Miller (software); Michael J. Richmond, Thomas J. Evans, Steven Kerry, and Lenny
Andrade (electro-mechanical design, assembly, test, and manufacture); Sam Hill and Paul Rose (optical design and
fabrication); and Dick Green (business development). The authors wish to thank Michael Thomas of Optical Product
Development and Kevin Thompson and Michael Rodgers of Optical Research Associates. Portions of this work were
supported by NIST ATP Cooperative Agreement No. 70NANB3H3028 and Army SBIR contract no. W56HZV-04-C-
0144. Digital Micromirror Device, DMD, Digital Light Processing, DLP, Texas Instruments, and TI are either
registered trademarks or trademarks of Texas Instruments Incorporated. SGI and OpenGL are registered trademarks of
Silicon Graphics, Inc. Perspecta is a registered trademark of Actuality Systems, Inc. SynthaGram is a trademark of
StereoGraphics Corporation. Significant portions of this work are patent-pending in the U.S. and other countries.

6. REFERENCES

1 G. Favalora, “Spatial 3-D: The Death of the Pixel,” SPIE’s oemagazine, p. 25, Jan. 2004.

2 B. G. Blundell and A. J. Schwarz, Volumetric Three-Dimensional Display Systems, John Wiley & Sons, New York,
2000.

3 M. Halle, “Autostereoscopic displays and computer graphics,” Computer Graphics, ACM SIGGRAPH, 31(2), pp. 58-
62, May 1997.

4 K. Langhans, D. Bezecny, D. Homann, D. Bahr, C. Vogt, C. Blohm, and K.-H. Scharschmidt, “New portable FELIX
3D display,” in Projection Displays IV, Ming H. Wu, Editor, Proceedings of SPIE Vol. 3296, pp. 204-216, 1998.

5 D. F. McAllister (Ed.) Stereo Computer Graphics and other True 3D Technologies, Princeton Univ. Press, Princeton,
NJ, Oct. 1993.

6 S. A. Benton (Ed.) Selected Papers on Three-Dimensional Displays, SPIE Milestone Series MS 162, SPIE Optical
Engineering Press, 2001.

7 J. L. Coddington and R. J. Schipper, “Practical Solid State Three Dimensional (3-D) Display,” in IRE International
Convention Record, Part 3, pp. 177-184 (1962).

8 M. Hirsch, Three dimensional display apparatus, U.S. Pat. No. 2,967,905, filed Jan. 1958, issued Jan. 1961.

9 See www.gpgpu.org

10 R. K. Dorval, M. Thomas, and J. L. Bareau, Volumetric three-dimensional display system, U.S. Pat. No. 6,554,430,
issued 2003.

11 G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100
Million-voxel volumetric display,” in Cockpit Displays IX: Displays for Defense Applications, Darrel G. Hopper,
Editor, Proceedings of SPIE Vol. 4712, pp. 300-312 (2002).

12 M. Halle, “The Generalized Holographic Stereogram,” S.M. Thesis, Program in Media Arts and Sciences,
Massachusetts Institute of Technology, p. 51, February 1991.

13 M. Halle, “Holographic stereograms as discrete imaging systems,” in Practical Holography VIII, Stephen A. Benton,
Editor, Proceedings of SPIE Vol. 2176, pp. 73-84 (1994).

14 StereoGraphics Corporation, The Synthagram handbook, October 2004,
http://www.stereographics.com/products/synthagram/The_SynthaGram_Handbook_v9.pdf.

15 L. Lipton and M. Feldman, “A new autostereoscopic display technology: The SynthaGram™”, in Stereoscopic
Displays and Virtual Reality Systems IX, Andrew J. Woods, John O. Merritt, Stephen A. Benton, Mark T. Bolas,
Editors, Proceedings of SPIE Vol. 4660, pp. 229-235 (2002).

16 J. Konrad and P. Agniel, "Non-orthogonal sub-sampling and anti-alias filtering for multiscopic 3-D displays," in
Proc. SPIE Stereoscopic Displays and Virtual Reality Systems, vol. 5291, pp. 105-116, Jan. 2004.

17 Unpublished study by David Liang, Girish Narayan, and Aaron Wang (Stanford University School of Medicine), and
David Kao (NASA Ames Supercomputer Center) as described in Actuality Systems whitepaper Experimental
Measurement of the Advantage of Spatial 3D Displays in the Planning of Surgical Procedures. In the study, two
experienced cardiologists pointed a needle at a grid placed over a phantom of the heart. They attempted to predict the
cell of the grid that would lead to intercepting a biopsy target within the phantom. Each subject did six tests with the
needle in different positions. The data, which were randomized, were acquired by three ultrasound techniques (2-D
echo, 3-D moving echo probe, and wide-angle 3-D stationary echo probe) and were displayed on a 2-D display. The
data were acquired using a Philips Sonos 7500 real-time 3-D echocardiography system. The data displayed in
Perspecta was captured using the wide-angle 3-D stationary echo probe, which captures an 80 x 80 pyramid. The
Spatial 3-D display provided results that were at least 20% more accurate than and twice as fast as other commonly
used displays.

18 K. F. Van Orden and J. W. Broyles, “Visuospatial task performance as a function of two- and three-dimensional
display presentation techniques,” Displays, Vol. 21, Issue 1, pp. 17-24, March 2000.

19 See for example National Electrical Manufacturers Association, “Digital Imaging and Communications in Medicine
(DICOM), Part 5: Data Structures and Encoding,” published 2004. Available online at
http://medical.nema.org/dicom/2004/04_05PU.PDF

