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Abstract

The maximum achievable frame-rate for a video camera

is limited by the sensor’s pixel readout rate. The same sen-

sor may achieve either a slow frame-rate at full resolution

(e.g., 60 fps at 4 Mpixel resolution) or a fast frame-rate at

low resolution (e.g., 240 fps at 1 Mpixel resolution). Higher

frame-rates are achieved using pixel readout modes (e.g.,

subsampling or binning) that sacrifice spatial for temporal

resolution within a fixed bandwidth. A number of compres-

sive video cameras have been introduced to overcome this

fixed bandwidth constraint and achieve high frame-rates

without sacrificing spatial resolution. These methods use

electro-optic components (e.g., LCoS, DLPs, piezo actua-

tors) to introduce high speed spatio-temporal multiplexing

in captured images. Full resolution, high speed video is

then restored by solving an undetermined system of equa-

tions using a sparse regularization framework. In this work,

we introduce the first all-digital temporal compressive video

camera that uses custom subsampling modes to achieve

spatio-temporal multiplexing. Unlike previous compressive

video cameras, ours requires no additional optical compo-

nents, enabling it to be implemented in a compact package

such as a mobile camera module. We demonstrate results

using a TrueSense development kit with a 12 Mpixel sensor

and programmable FPGA read out circuitry.

1. Introduction

The subdivision of time by motion picture cameras, the

frame-rate, limits the temporal resolution that can be re-

solved by a camera system. Although frame-rates over 30

frames-per-second (fps) are widely recognized to be imper-

ceptible to human eyes, high speed motion picture capture

has long been a goal in scientific imaging and cinematog-

raphy communities. The ability to resolve motion beyond

what the human eye can see has great scientific and aes-

thetic value, as demonstrated by the recent popularity of

slow motion videos available online. The ever decreasing

hardware prices have enabled significant increase in video

capture rates. Nevertheless, fundamental limitations still

bound the maximum achievable frame-rates as well as the

cost and availability of high speed cameras. Recent ad-

vances in compressed sensing have opened up new frontiers

for achieving high frame-rates beyond those possible by di-

rect Nyquist sampling. In this work we demonstrate videos

at frame-rates of 250 fps using a TrueSense KAC-12040 de-

velopment kit. The development kit includes a FPGA that

can be programmed on the fly to change pixel sub-sampling

modes at extremely high speeds. This allows us to effec-

tively apply spatio-temporal multiplexing on-chip without

the need for any additional optical components (e.g., LCoS,

DLP, or relay optics). Unlike previous compressive video

cameras, our system is entirely digital; it requires no addi-

tional optics, and can be implemented with the same com-

pact package and low cost of today’s mobile camera mod-

ules. We believe our method is the first to bring compressive

video capture within the realm of commercial viability.

1.1. Related Work

There is a long history of research in using computa-

tional methods to increase camera frame-rates. In [3], the

authors used a hybrid approach that combines a low-speed,

high-resolution camera with a high-speed, low-resolution

camera. Gupta et al. used a high-speed DLP projector

coupled with a low-speed camera to increase its effective

frame-rate [7]. Bub et al. used a similar approach to in-

crease the frame-rate of microscopy systems [4] by using a

DLP to modulate a relayed image of the sample. Wilburn

et al. [13] and Agarwal et al. [2] employed camera arrays

to capture high speed video. For all aforementioned tech-

niques, frame-rate increase results by either sacrificing spa-

tial resolution, or by utilizing multiple cameras.

More recently, a number of researchers have developed

systems capable of recovering high-frame-rate video us-

ing compressive coded measurements. These techniques

use a single camera system and aim at reconstructing a

video sequence without sacrificing spatial resolution. At

the heart of these techniques is the principle that an under-

determined system of equations can be solved accurately
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when the underlying signal exhibits sufficient sparsity. In

the context of video capture, this amounts to recovering

several frames of video from a small set of measurements,

which has been demonstrated using a variety of methods.

The single pixel camera from Rice has been demonstrated

at video rates, and compression has been achieved in both

space [5] and more recently, time [12]. The single pixel

camera is most useful for imaging with particularly expen-

sive detectors (e.g., SWIR, THz), but does not take advan-

tage of the massively parallel sensing capabilities in silicon

imager arrays. Several researchers have developed com-

pressive video systems that incorporate high-speed spatio-

temporal optical modulation with high resolution CMOS

and CCD arrays. Reddy et al. [11] and Liu et al. [9] use fast-

switching LCoS SLMs to provide spatio-temporal modu-

lation at speeds much greater than typical frame-rates of

CMOS/CCD sensors. These techniques recover a set of

high-speed video frames from a single coded photograph

using compressive sensing reconstruction techniques. How-

ever, the spatial resolution that can be achieved using this

technique is limited by the resolution of the optical modu-

lator (≪ 1Mpixel in these experiments). Furthermore, in-

clusion of a SLM can dramatically increase system cost,

presenting a barrier to adoption outside academic settings.

A few techniques have been introduced that avoid the

need for a SLM. Holloway et al. used temporal modulation

only (i.e., a flutter shutter) to recover compressive video us-

ing only fast-speed switching modes on a commodity sen-

sor [8]. The quality of recovered videos was markedly

worse than other methods that incorporate spatial modula-

tion. In a recent Nature publication, a static mask pattern

displayed on an SLM was employed to reconstruct 10 pi-

cosecond resolution video of non-periodic events [6]. The

technique however, requires the use of a streak camera,

which is prohibitively costly for all but a small number of

applications. Llull et al. used a printed coded aperture mask

placed on a translation stage to create spatio-temporal mod-

ulation in lieu of a SLM [10]. In this paper, we introduce the

first temporal compressive video camera to use an entirely

digital means of spatio-temporal modulation, eliminating

the need for bulky and expensive electro-optical compo-

nents. We apply modulation on-chip using programmable

subsampling modes, then reconstruct high speed video us-

ing a dictionary of video patches.

2. Camera System Description

In this section we describe the camera system we uti-

lized for capturing and reconstructing compressive video.

We use the commercially available KAC-12040 Image Sen-

sor by TrueSense Imaging Inc. whose datasheet is available

online [1]. The camera provides a 12 Mpixel CMOS sensor

which is programmable through a user friendly Python in-

terface. It offers non-standard sampling capabilities allow-

ing custom pixel readout, per frame, while increasing the

capturing frame-rate. Hence, it allows the user to sample

subsets of the sensor information at different time instances

effectively enabling temporal on-chip compressive sensing

acquisition, even though that was not the purpose for which

it was constructed. The sensor is available in a grayscale

or a color filter array (CFA) version and it offers a vari-

ety of customizable functionalities ranging from autofocus,

white-balancing, autoexposure, etc. Here we will analyze

the ones that are relevant to compressive sensing video ac-

quisition but the interested reader can refer to the device’s

user manual for more details [1].

2.1. CMOS Readout  Frame Rate Increase

The sensor provides Global and Rolling Shutter modes.

Every pair of sensor lines are read in parallel and the time

needed to read a group of 2 lines is defined as the Line Time.

The time needed is directly related to the camera hardware

(i.e., pixel bit depth, ADC conversion and LVDS readout)

as well as the width of the area to be read and essentially

limits the maximum possible frame-rate of the camera. The

current version of the sensor contains 4 LVDS banks but a

future release will provide 8. In the current architecture, the

LVDS is the main bottleneck in the sensor readout pipeline

allowing a maximum frame-rate of ∼ 30 fps at the full 12
Mpixel resolution. By reducing the number of lines to be

read, the sensor can significantly increase the camera frame-

rate.

Unfortunately, the circuitry sets the readout time based

on the total width of the imaging area, rather than skipping

columns that are not being read. As a result, even though

all columns are read in parallel, as in any CMOS sensor, the

current design can achieve only linear increase in frame-

rates relative to the achievable rate at the original frame res-

olution, before subsampling. This increase is directly anal-

ogous to the ratio between lines containing no samples and

lines containing at least one sample.

2.2. Custom Sampling

The camera contains a set of registers that control the

capturing characteristics of each frame. All capturing pa-

rameters can be controlled by writing specific 16 bit codes

to each one of these registers. The relevant sampling capa-

bilities are,

• Readout Flip: Horizontal, vertical or combined flip for

the readout pixel order is provided.

• Region of Interest (ROI) Selection: The starting point

as well as the width and height of the sensor area to

be readout are customizable. ROI selection is always

relative to the upper-left corner of the image sensor.

Hence, combining ROI selection and flip readout mode
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Figure 1. Flipping and Bayer Pattern Positioning using constant

parameters ROI parameters (starting point, height and width). The

flipping operation combined with constant ROI parameters virtu-

ally implements optical flipping.

No Flip  Horizontal Flip

 Both FlipsVertical Flip

Figure 2. Combining subsampling and flipping to capture a cen-

tralized ROI.

No ROI Shift  Horizontal ROI Shift

 Both ROI ShiftsVertical ROI Shift

Figure 3. Combining subsampling and ROI shifts to capture a cen-

tralized ROI.

virtually implements optical flipping when the ROI pa-

rameters are kept constant. The constraints for the ROI

selection are,

1. Horizontal starting point (X) and width (W )

must be multiples of 8.

2. Vertical starting point (Y ) and height (H) must

be multiples of 2.

• Subsampling: Any M out of N subsampling, where

M and N are even numbers up to 32 and M < N is

provided. The subsampling parameters M and N are

the same in both directions. Additionally, the subsam-

pling starting point is always the same as the ROI start-

ing point. Therefore, one can shift the subsampling

pattern in both directions by modifying the starting

point of the ROI, adhering however to the constraints

presented above. The constraints for the subsampling

selection are,

1. N must exactly divide both the W and H of the

ROI.

2. The resulting smaller dimension after subsam-

pling must be greater than 200 pixels.

3. The resulting dimensions after subsampling fol-

low the modulo 8 and modulo 2 rules of the W
and H , respectively. Therefore, the resulting size

after subsampling might be slightly modified au-

tomatically by the sensor hardware.

Figures 1, 2 and 3 summarize the custom sampling ca-

pabilities of the camera by presenting illustrative examples.

Figure 1 shows the relative positioning of the ROI with re-

spect to the starting point (0, 0) of the CMOS sensor array.

One can observe that the application of the same ROI with

the combination of flipping leads to sampling different parts

of the image. Figure 2 presents an example of sampling

the central ROI of the scene by combining subsampling and

the flipping operation. Figure 3 describes the capturing of

the same ROI by combining subsampling and shifts for the

starting point of the ROI. Obviously, for Figures 2 and 3, if

the frames exhibit motion, the measurements will not corre-

spond to the original ROI of a single frame but rather con-

tain combined information from different areas of the se-

quential frames. As mentioned above, the ROI positioning

must adhere to certain rules, hence not allowing shifts at all

possible locations. Therefore, in order to capture a scene

at finer resolutions, subsampling, flipping and ROI shifts

must all be combined. Based on the presented constraints,

the finer resolution one can sample is 4 × 4 pixels in each

16×16 block of each frame. With appropriate combination

of flips and ROI shifts, the total area of a 16× 16 block can

be covered in 16 frames. Such sampling enables a 4× in-

crease in frame-rate while sampling 1/16 of the total pixels

per frame and we refer to it as 4 out of 16 subsampling.
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Figure 5. Measurement Model
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Figure 4. Sensor State Diagram, replicated from [1].

2.3. Sensor States

The image sensor cycles through a predefined series of

states that allow the sequence of reading frames and writing

registers to be customizable. A diagram of the various sen-

sor states is presented in Figure 4. As shown in the diagram,

the sensor offers two different methods for cycling between

reading frames or writing registers, specifically using a soft

trigger or an external trigger. The soft trigger refers to the

cycling between the IDLE and RUNNING states and can be

achieved by simple Python commands. The external-trigger

refers to the Slave Integration Mode (see Figure 4) and one

can trigger a frame capture using a virtual command for an

external trigger or an actual signal trigger through a pro-

vided external pin. In the soft-trigger mode, the exposure

time is defined by writing an appropriate value to a register

while in the Slave Integration Mode, exposure is dictated by

the external signal’s ON state. Based on our experience with

the sensor, the slave integration mode was sometimes unsta-

ble resulting to variable frame-rates, therefore we used the

soft-trigger mode. One drawback of the soft trigger mode

is that the FPGA needs to communicate with the connected

computer through USB, hence introducing a latency which

does not allow reaching the maximum possible frame-rate.

Moreover, register reads and writes are only allowed on cer-

tain sensor states. Specifically, the ROI and subsampling

parameters can all be programmed in the IDLE state while

the readout flip option can only be programmed after re-

turning to the CONFIG state. Therefore, writing or reading

registers can introduce extra latency combined with the la-

tency imposed by the communication of the Python inter-

face to the sensor each time a register change command is

sent. Due to these latencies, in our forthcoming discussion

we mainly focus on the proof of concept of using the True-

Sense kit as a compressive sensing video architecture rather

than trying to achieve the maximal frame-rates proposed by

the specifications of the manufacturer.

3. Camera Model for Compressive Sensing

Based on the analyzed imaging capabilities in section 2

we wish to perform temporal compressive sensing acquisi-

tion of a video sequence. A special characteristic of this

compressive video architecture is that the video data cube is

not summed across time as in similar approaches [10]. In-

stead, the full video datacube is subsampled in the 3-D or

4-D space, for grayscale or color images, respectively.

The forward measurement model is illustrated in Fig-

ure 5. Denoting the unknown video data cube by V :
h×w× d× t, where h, w, d and t represent height, width,

depth and time, respectively and its vectorized version v,

the forward measurement model can be written as,

y = ΦBv, (1)

where B represents the Bayer pattern operator or the Iden-

tity matrix, depending on whether the data cube v is RGB or
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Grayscale, respectively, Φ represents the measurement ma-

trix (sequence of sampling patterns) and y is the obtained

measurement vector. Note that the obtained measurements

are not degraded and therefore can be trusted completely

and need not be reconstructed.

4. Reconstruction Algorithm

In our work we did not employ sparsity in order to mini-

mize computational cost since sparsity inducing algorithms

are usually costly. Especially considering the very high res-

olution of the sensor, optimization using sparsity-based ap-

proaches would be prohibitively time consuming. Instead,

since a set of measurements are already known and accu-

rately measured, we utilize a simple least-squares approach

for reconstruction purposes. Nevertheless, we employ a dic-

tionary of patches, commonly used in compressive sens-

ing approaches in order to make our solution space more

constrained. Specifically, we use a 7 × 7 × 16 dictionary

of patches representing a learned dictionary over a set of

videos for a sequence of 16 frames. We obtained this dic-

tionary by the authors in [9]. However, we only find a set of

7×7×16 = 784 linear independent columns and use these

for reconstruction. Since the columns are linearly indepen-

dent, the known part of the solution is guaranteed to be ex-

act, whereas the remaining missing areas are expected to

be covered by meaningful information since they have been

selected by a dictionary trained for video sequences. Note,

that an ℓ1 minimization approach would approximate the

known samples (i.e., not yield exact reconstruction) while

not providing any extra information regarding the missing

samples. This further supports our choice of a least-squares

approach for reconstruction purposes.

Vector Bv from equation (1) can be analyzed as,

Bv = TD

V
DTD

M
a, (2)

where a is a vector of coefficients that can represent the

data cube v using elements of the dictionary D, TD

M
is an

operator that converts vector a into a matrix and TD

V
is an

operator which re-vectorizes the resulting matrix DTD

M
a,

after averaging overlapping patches, if any.

Denoting D̃ = TD

V
DTD

M
, we have,

y = ΦD̃a, (3)

therefore a can be solved using least-squares as,

â = argmin
a

∥

∥

∥
y − ΦD̃a

∥

∥

∥

2

2

. (4)

Equation (4) can be efficiently solved using the Conjugate

Gradient method. Finally, the unknown video can be ob-

tained as,

v̂ = BT D̃â, (5)

Figure 6. Original single frames for the reconstructed frames in

Figure 8, obtained from [12].

where the transpose of the Bayer operator BT denotes the

demosaicing operation (i.e., converting a CFA pattern im-

age to RGB using demosaicing).

4.1. Algorithm Details

Since we aim at reconstructing video sequences of high

spatial resolution, reconstruction speed is a major issue.

In order to further minimize computational cost, we pre-

process the captured measurements by taking temporal dif-

ferences between the frames that have been sampled with

the same sampling pattern. Then by thresholding we cat-

egorize the image blocks into foreground or background.

The background can be easily reconstructed directly by

summing the measured data along the time direction. For

the foreground labeled areas, the minimization problem in

(4) is applied. Furthermore, we utilize spatially overlapping

patches but avoid full sliding overlap by selecting a set of

patch locations at random in each 7 × 7 area, equal to the

patch size of the utilized dictionary. Finally, the reconstruc-

tion of 16 frames is also performed in a sliding fashion, i.e.,

first frames 1-16 are reconstructed, then 2-17 and so on and

the final results are averaged. These algorithm details are

summarized in Figure 7.

5. Experimental Results

In this section we perform a series of simulations as well

as real experiments to demonstrate our proposed approach.

Figure 8 shows simulated reconstructions for the videos

whose first original frames are presented in Figure 6. Both

video sequences were obtained from [12], have resolution

256× 256 and were sampled using the 4 out of 16 subsam-

pling described in section 2.2. They exhibit slow motion

between frames and the reconstructed frames are of high

quality.

Figures 9 and 10 show real experiments with a moving

metronome with a resolution chart attached to it. Both se-

quences have resolution 752×1008 pixels. They were both

captured using 4 out of 16 subsampling. The first sequence

in Figure 9 contains increasing motion moving from left to

right and it shows that the reconstruction quality can be re-

ally high when the captured video sequence contains mo-
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1 2 3 Dictionary-Sized

patches averaged
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Figure 7. Illustration of algorithm steps.

Figure 9. Real reconstruction of a moving metronome with resolution 752× 1008 pixels and a frame-rate of 252 fps.

tion that can be effectively captured by the camera’s frame-

rate without blurring. Nevertheless, the right reconstructed

frame exhibits several artifacts showing the limitations of

the camera when the scene movement is too fast to effec-

tively be captured by the camera. Specifically, on the left

side the metronome slows down while accelerating when

moving to the center. Finally, Figure 11 shows closeups for

the sequence presented in Figure 10.

This brings us to the essence of our proposed system.

Most presented systems, like the one in [10] perform tem-

poral multiplexing by summing measurements of the data

cube on a single frame. In our approach the data is subsam-

pled and captured without any motion-blur at high frame-

rates. Comparing our system to the one in [10] we can

mention that it has multiple benefits, such that results are

easily reproducible and the reconstruction algorithm need

not be computationally expensive. Furthermore, the lack of

any additional need for optical elements or masks avoids

alignment issues as well as possible diffraction effects. The

main limitation is that the maximal frame-rate is limited by

the camera’s hardware and cannot be increased further, i.e.,

one can only reconstruct a video sequence at the captured

frame-rate of the subsampled sequence.

6. Conclusions

We have demonstrated the first all-digital implementa-

tion of a temporal compressive video camera. Our proto-

type system is based on the TrueSense KAC-12040 sensor

development kit, which allows programmable pixel read out

modes to be dynamically programmed via FPGA. Previous
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Figure 10. Real reconstruction of a moving metronome with resolution 752 × 1008 pixels and a frame-rate of 255 fps. Upper row shows

the actual camera measurements, lower row shows the reconstruction.

compressive video cameras used complicated optical setups

with expensive electro-optical components, introducing a

significant barrier to reproducibility. Our system, on the

other hand, requires only an inexpensive ($3K) sensor de-

velopment kit. Code for programming the FPGA (100 lines

of Python code) and reconstructing video (Matlab library)

will be made available on our website so that our experi-

ments may be replicated with minimal effort.

The effective bandwidth achieved by our compressive

video camera is around an order of magnitude greater than

most commercially available sensors today. More impor-

tantly, the sampling method we use can be implemented on

nearly any camera by merely incorporating the appropriate

readout circuitry. We hope that our initial implementation

will encourage camera manufacturers to incorporate more

flexible readout modes into their designs so that compres-

sive video reconstruction may enter into the standard set

of digital processing operations applied to consumer video

capture.

There are several opportunities for improvement in fu-

ture work. The KAC-12040 allowed us to demonstrate the

efficacy of using programmable readout modes for com-

pressive video construction, but ideally the readout modes

would offer even finer granularity of control. Firstly, KAC-

12040 is a high speed sensor based on a parallel column

readout architecture. As a result, M out of N subsam-

pling does not increase frame-rate by a factor of N

M
, some-

what limiting the frame-rate increase that can be achieved

using compressive reconstruction. Many consumer cam-

eras, however, are not based on this readout architecture and

would achieve a N

M
frame-rate increase using our approach.

Secondly, the horizontal ROI offset of the KAC-12040 must

be a multiple of 8, severely restricting the sampling patterns

that may be used. We compensate in this paper by sub-

sampling blocks of 4 × 4 pixels, but a more ideal pattern

of 2 × 2 could be achieved with a new FPGA implemen-

tation. In general, co-optimization of subsampling pattern

and readout circuitry design remains an interesting direction

for future work. An ideal optimization strategy would be to

take into account both reconstruction quality and hardware

constraints. For instance, an interesting possibility could be

to sample different sized blocks sequentially (e.g., 2

8
, fol-

lowed by 8

16
, etc.), but performance would depend on how

efficiently the FPGA could dynamically switch between dif-

ferent frames sizes. We hope that our initial work will spur

further research on the co-design of spatio-temporal sam-

pling patterns and custom pixel read out modes.
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