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Abstract: We present a prototype compressive video camera that encodes
scene movement using a translated binary photomask in the optical path.
The encoded recording can then be used to reconstruct multiple output
frames from each captured image, effectively synthesizing high speed
video. The use of a printed binary mask allows reconstruction at higher
spatial resolutions than has been previously demonstrated. In addition, we
improve upon previous work by investigating tradeoffs in mask design
and reconstruction algorithm selection. We identify a mask design that
consistently provides the best performance across multiple reconstruction
strategies in simulation, and verify it with our prototype hardware. Finally,
we compare reconstruction algorithms and identify the best choice in terms
of balancing reconstruction quality and speed.
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1. Introduction

The subdivision of time by motion picture cameras, the frame-rate, limits the temporal reso-
lution of a camera system. Even though frame-rates above 30 Hz are widely recognized to be
imperceptible to human eyes, high speed motion picture capture has long been a goal in scien-
tific imaging and cinematography communities. The ability to resolve motion beyond human
perception has great scientific and aesthetic value, as demonstrated by the recent popularity of
high frame-rate videos available online. Although video capture rates have increased as hard-
ware prices have fallen, fundamental constraints still limit maximum achievable frame-rates as
well as the cost and availability of high speed cameras. Recent advances in compressed sensing
have enabled novel methods for achieving ever increasing frame-rates beyond those possible
by directly sampling a scene in hardware. In this paper, we compare and optimize the hard-
ware and algorithmic components of compressive video capture. We demonstrate a prototype
compressive video camera capable of recovering 2 Mpixel videos at frame-rates in excess of
740 frames-per-second (fps) using commodity CMOS sensors. Using our system, an effective
frame-rate increase by a factor of 10⇥ is possible.

We use a high-resolution printed coded aperture mask placed on a fast moving translation
stage to create spatio-temporal modulation. We incorporate this into a forward model used to
reconstruct multiple frames of video from a single coded, captured image. Our approach has
several advantages over previously presented techniques. First, the coded mask is a relatively
inexpensive optical component, bringing compressive video capture much closer to commercial
viability. Second, our printed masks are fabricated at very high resolutions (e.g., pixel size of
4.5⇥4.5 µm2), leading to a 1-1 mapping between the mask and the sensor. Using these masks in
conjunction with high-resolution, off-the-shelf CMOS sensors allows us to achieve compressive
video capture with exceptionally high spatial resolution. The contributions of our work are as
follows:

1.1. Contributions

• Large scale system: We demonstrate compressive video using a 2 Mpixel CMOS sensor,
nearly 8⇥ increase in reconstructed image dimensions over previous systems.

• Analysis of mask and algorithm selection: We explore various mask designs and al-
gorithm implementations, reporting on their performance through simulations and ana-
lyzing their tradeoffs between reconstruction quality and time. We introduce a new mask
pattern that proves to perform better than earlier systems (e.g., Llull et al. [1]) while
optimizing over its design parameter space.

• Hardware prototype: We show results of 2 Mpixel compressive videos at 743 fps, cap-
tured using our prototype camera and outfitted with the proposed mask patterns.

1.2. Related work

There is a long history of research in using computational methods to increase camera frame-
rates. Ben-Ezra et al. [2] used a hybrid approach that combines a low-speed, high-resolution
camera with a high-speed, low-resolution camera. Gupta et al. used a high-speed Digital Light
Processing (DLP) projector coupled with a low-speed camera to increase its native frame-
rate [3]. Bub et al. employed a similar approach to increase the frame-rate of microscopy
systems [4] by using a DLP to modulate a relayed image of the sample. Wilburn et al. [5]
and Agarwal et al. [6] utilized camera arrays to capture high speed video. Camera arrays, in
conjunction with coded exposure, have also been used in [7] to acquire high frame-rate video.
For all the techniques mentioned above, frame-rate speedup is achieved by either sacrificing
spatial resolution, or by increasing the number of cameras used.



More recently, a number of researchers have developed systems capable of recovering high
frame-rate video using compressive coded measurements. These techniques use a single camera
system with resolution limited by the code feature size. At the heart of these techniques is
the principle that an underdetermined system of equations can be solved accurately when the
underlying signal contains sufficient sparsity. In the context of video capture, this amounts to
recovering several frames of video from a small set of measurements, which has been applied
using a variety of methods. These methods utilize per-pixel coding which proves superior to
per-camera coded exposure due to the sparsity induced on space as well, see [7] for a theoretical
analysis.

The single pixel camera from Rice has been demonstrated at video rates, and compression
has been achieved in both space [8] and more recently, time [9]. Several extensions of these
approaches have been proposed, ranging from improved algorithmic design [10] and mask opti-
mization [11] to non-visible spectrum sensing [12]. The single pixel camera is most useful when
imaging with particularly expensive detectors (e.g., Infrared [12, 13] or Terahertz [14, 15]), but
does not take advantage of the massively parallel sensing capabilities of silicon imager arrays.
Several researchers have developed compressive video systems that incorporate high-speed
spatio-temporal optical modulation with high resolution CMOS and CCD arrays. Successful
reconstruction of high-speed periodic videos has been demonstrated in [16] using strobing
photography. Reddy et al. [17] and Liu et al. [18] used fast-switching Liquid Crystal on Sili-
con (LCoS) Spatial Light Modulators (SLMs) to provide spatio-temporal modulation at speeds
much greater than typical frame-rates of CMOS/CCD sensors. These techniques recover a set
of high-speed video frames from a single coded photograph using compressive sensing recon-
struction techniques. However, the achieved spatial resolution is limited by the resolution of
the optical modulator (⌧ 1Mpixel in these experiments). Furthermore, inclusion of an SLM
can dramatically increase system cost and power consumption, presenting a large barrier to
adoption outside academic settings.

A few techniques have been introduced that omit the need for an SLM. Holloway et al. used
temporal modulation only (i.e., a flutter shutter) to recover compressive video using only fast-
speed switching modes on a commodity sensor [19]. Such switching modes have also proven
successful in capturing focal stacks [20] or high-speed high dynamic range video [21]. In a re-
cent Nature publication, a static mask pattern displayed on an SLM to reconstruct 10 picosec-
ond resolution video of non-periodic events was demonstrated [22]. A comparable temporal
resolution was also recently achieved using temporal and spatial dispersive elements [23]. The
aforementioned techniques, however, require complicated optical elements and expensive cam-
eras (e.g., streak camera in [22]) which are prohibitively costly for all but a small number of
applications.

Finally, a few approaches have been proposed in order to directly apply compressive sam-
pling on the sensor circuitry without the use of additional optical elements. Such techniques
have mainly been presented for imaging applications, implementing spatial multiplexing, where
multiplication of the single image with pseudorandom sequences is applied in the analog do-
main [24, 25] or by directly applying an on-chip image sparsifying transformation [26]. For
video applications, a compressive CMOS design, based on an Asynchronous Time Image Sen-
sor has been proposed by [27] while a CMOS prototype with custom per-pixel read-out modes
has recently been showcased by [28].

The work most similar to ours is by Llull et al., who first used a printed coded aperture
mask placed on a translation stage to create spatio-temporal modulation in lieu of an SLM [1]
and later extended the same architecture for extracting color video and depth [29]. Our work
introduces several improvements over their system, including increased spatial dimensions of
the reconstructed frames and optimized mask design.
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Fig. 1: The forward sensing model used in this paper. A space-time volume x consisting of
a set of T frames, with H ⇥W pixels each, is multiplied by a set of mask patterns embedded
within the sensing matrix F. The sensor integrates over time, producing a single coded captured
image y consisting of H ⇥W pixels.

2. Forward model

Our forward model maps a coded spatio-temporal volume onto a single image using the linear
projective model (see Fig. 1):

y = Fx, (1)

where y 2 R(H·W )⇥1
+

is a lexicographically ordered version of the sensed image consisting of
H ·W pixels, F2R(H·W )⇥(H·W ·T )

+

is the coding matrix that maps a set of T video frames of H ·W
pixels onto a single H ⇥W pixel image, and x 2R(H·W ·T )⇥1

+

is the unknown space-time volume
that we desire to recover. The elements of matrix F are determined by the optics of the system,
whose design constraints could be optimized to improve performance. For the compressive
video systems considered in this paper, the observations are modulated by a set of 2D mask
patterns with the same resolution as the sensor (i.e., the feature size of the coded mask and the
sensor pixel size are identical).

Let the 2D mask patterns be denoted by the matrices Mi 2 RH⇥W
+

, i 2 {1, · · ·T}. The mask
patterns are then used to populate a new matrix Mi = diag(vec(Mi)) 2RH·W⇥H·W

+

, where func-
tion vec(M) lexicographically reorders the H⇥W matrix M into a H ·W ⇥1 vector, and diag(x)
creates an H ·W ⇥H ·W matrix by placing the H ·W entries of the vector x along the main di-
agonal and zeros everywhere else. The coding matrix can then be expressed as a concatenation
of these new matrices as,

F =

⇥
M0 M1 · · · MT

⇤
. (2)

For the approaches of Reddy et al. [17] and Liu et al. [18], each of the mask patterns Mi may
be chosen independently by programming an SLM to switch between different patterns at high
speeds. For the work of Llull et al. [1] and Giu et al. [22], as well as the prototype camera
described in this paper, a translating static mask pattern is used. One of the disadvantages of the
translating mask-based technique is that the displayed patterns are more restrictive compared
to the ones possible using an SLM. As a result, the mask patterns Mi are not necessarily inde-
pendent, and can be described by Mi = si(M), where the operator si(M) shifts the single native
mask pattern M by i columns to the right.

3. Reconstruction algorithms

In an attempt to achieve an implementation agnostic characterization of mask designs, we tested
a number of different reconstruction algorithms. Candidate reconstruction algorithms were se-
lected for their utility in solving the under-determined system of Eq. (1). Most approaches rely
on enforcing fidelity to the data using a quadratic term as well as employing a regularization
functional F(·) which promotes sparsity of the unknown signal x on some chosen transform



domain. The selection of F(·) aims at encouraging consistency with natural image priors, i.e.,
the following representation is sought after,

â = argmin
a

ky�FY�1ak2
2 +lF(a). (3)

In Eq. (3), Y represents the transform to the chosen domain resulting in a sparse representa-
tion a, such that x is given by x = Y�1a, and l > 0 is a tunable regularization parameter. We
use standard natural image representations (e.g., discrete cosine transform (DCT), learned dic-
tionaries or image gradients). We evaluated the following optimization algorithms as potential
solvers:

`0 regularization: In `0 regularization algorithms the functional is selected as F = kak0 and
the problem in Eq. (3) can be reformulated as,

â = argmin
a

kak0 subject to ky�FY�1ak2
2  e, (4)

where e is an error tolerance that defines the trade-off between quality and runtime re-
quirements and is related to the regularization parameter l of Eq. (3). This is a NP-hard
problem [30] and can be solved using Greedy methods such as Orthogonal Matching Pur-
suit (OMP). OMP in combination with learned dictionaries has been introduced by [31]
specifically for this type of problem. We used the implementation OMP-Box v10 from
http://www.cs.technion.ac.il/ ronrubin/software.html. Reconstruction is performed block-wise
on overlapping sets of 7⇥7 patches of pixels, using a learned overcomplete dictionary consist-
ing of 10,000 atoms introduced in [31], provided courtesy of the authors. In this case, Y�1 in
Eq. (4), denotes the dictionary.

`1 regularization: Using F = kak1, Eq. (3) can be reformulated into the LASSO (Least-
Absolute Shrinkage and Selection Operator) problem as,

â = argmin
a

ky�FY�1ak2
2 +lkak1. (5)

There is a variety of algorithms for solving the problem in Eq. (5). In our experiments we used
the FISTA (Fast Iterative Shrinkage Thresholding Algorithm) of [32] and the interior point
method (L1 LS) of [33] employing the DCT as a sparsifying basis. Additionally, we investigate
the patch-wise implementation of `1 optimization schemes by employing the GAP (Generalized
Alternating Projection) algorithm. GAP was introduced by Liao et al. [34] and employed for
this particular problem by Llull et al. [1]. It incorporates the idea of an `1 minimization by a
weighted `2 problem. We use the implementation from Llull et al. [1], provided courtesy of the
authors.

`2 regularization: Using F = kQxk2
2, Eq. (3) can be solved directly in the signal domain as,

x̂ = argmin
x

ky�Fxk2
2 +lkQxk2

2. (6)

Using Q as a high-pass filter operator (HP) we implicitly enforce the gradient of the signal, or
else its energy at high frequencies, to be small. This formulation is referred to as CLS (Con-
strained Least Squares). Strictly speaking, the CLS formulation cannot be categorized as a
sparse optimization method since it enforces a Gaussian regularizer instead of a Laplacian one.
It is included here for comparison because the optimization problem can be computed extremely
efficiently, which is of critical importance since our system captures images with much higher
resolution than previously demonstrated.
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(a) SLM-Random (used in [17]).

(c) Shifted-Random (used in [1], [22]). (d) Shifted-Normalized (this paper).

(b) SLM-Normalized (used in [18]).

Fig. 2: The four different mask patterns considered in this paper. (a) and (b) show a set of
T different masks to be displayed on an SLM; (a) shows a set of thresholded Gaussian masks;
(b) shows a set of masks that, when summed across the t direction, result to the same number
of samples per pixel. The forefront masks presented in (c) and (d) depict a mask pattern which
will be placed on a translating stage in order to produce the datacube shown, when translated
horizontally on the x direction; (c) corresponds to a thresholded Gaussian mask; (d) corresponds
to the optimized mask proposed in this paper. The proposed mask, when translated, produces
an average value that is identical across all pixels of the sensor.

4. Mask design

The choice of the matrix F plays a key role in the reconstructed image quality irrespectively of
the selected reconstruction algorithm. Various popular matrices in the literature are known to
perform particularly well (e.g., Gaussian, Bernoulli) for signals that can be represented sparsely
in some basis. In addition, several researchers have analyzed the problem of optimizing the F
matrix [35, 36, 15]. Unfortunately, optimization approaches usually rely on minimizing coher-
ence between the sampling matrix and the sparsifying basis, which mostly applies to spatial
compressive sensing where dense matrices are used. Instead, the masks used for temporal com-
pressive sensing systems, as the one described herein, result in a sparse matrix with entries
across diagonals, as presented by Eq. (2), with only T · (H ·W ) non-zero values. For SLM-
based systems, each of these T · (H ·W ) entries can be chosen independently by programming
the projected patterns. For mask-translation systems, however, only H ·W +T ·H values can be
chosen independently (assuming horizontal translation at T discrete locations).

Two questions then naturally arise 1) “How does performance of SLM and translating mask-
based compressive video systems compare?”, and 2) “Which mask patterns will produce the
optimal sensing matrix F?”. With regards to 1), we intuitively expect SLM-based approaches
to provide superior performance since they enable greater flexibility on pattern selection, giving
additional degrees of freedom in sensing matrix design. This is confirmed by our experiments,
to be described later. With regards to 2), Llull et al. [1] and Reddy et al. [17] use a thresholded
Gaussian mask, presumably because it results in a sensing matrix that most closely resembles



a dense Gaussian matrix. In contrast, the mask patterns of Liu et al. [18] are normalized so
that the total amount of light collected at each pixel is constrained to be constant (a condition
not met by the random mask patterns). These normalized patterns have the advantage that sta-
tionary regions in the scene are photographed exactly without the need for any decoding. Our
analysis shows that such masks tend to produce improved performance across a wide variety of
reconstruction algorithms.

In the following, we analyze how the choice of mask pattern affects the performance of
compressive reconstruction, for both SLM and translating mask-based systems. The four mask
patterns we compared are depicted in Fig. 2. The SLM-Random mask patterns from Fig. 2(a)
are similar to the ones used by Reddy et al. [17]. They consist of a set of T H ⇥W pixel masks
produced from thresholded random Gaussian matrices. The SLM-Normalized mask patterns
from Fig. 2(b) are similar to the ones used by Liu et al. [18]. These patterns are pseudo-random,
but when summed, over time, produce an average intensity that is identical for each pixel. The
Shifted-Random mask pattern from Fig. 2(c) is similar to the ones used by Llull et al. [1] and
Gao et al. [22]. It consists of a single H ⇥W pixel mask produced by thresholding a random
Gaussian matrix. The mask is placed on a translating stage to produce a sensing matrix F as
described by Eq. (2). Figure 2(d) shows the translating mask used in our prototype. Our system
is a hybridization of the implementations from Liu et al. [18] and Llull et al. [1]. We use a
shifted mask-based system that avoids the need for a costly SLM, while producing normalized
mask patterns that result in superior reconstruction quality.

As observed in Fig. 2(d), our proposed mask consists of randomized lines of a repetitive
pattern allowing light to go through for P out of T frames for each pixel, hence ensuring that
all pixels are sampled the same amount of times, as in [18]. The apparent white streaks are
a consequence of the fact that we are using a translated mask instead of a SLM where ran-
dom selection of patterns per frame would be possible. The ratio P/T controls the level of
spatio-temporal mixing and can significantly affect reconstruction performance. For P = 1 the
reconstruction problem reduces to a per-frame inpainting problem, while for P= T the captured
scene would be corrupted by motion blur not allowing recovery of multiple frames.

4.1. Simulated performance

We simulated noiseless compressive video capture for two different scenes (Monster Scene
from [9], and Road Scene from [31], see Fig. 3(a)). We tested three types of algorithms (`0, `1
and `2 regularization) whose details were presented in section 3. For each algorithm, we de-
termined the optimal regularization parameters using cross-validation. We tested the four mask
types shown in Fig. 2, Random and Normalized masks for both SLM-based and translating
mask-based systems. For each mask, there is a parameter that can be tuned to optimize per-
formance: The binarizing threshold for Random masks, and the average transmitted intensity
(value of P) for Normalized masks. After conducting an extensive search along the parameter
space, we report on the performance of the masks with the optimum parameter selection for
T being fixed at 36 frames. Figure 3(b) shows reconstruction quality for each mask and algo-
rithm combination, using the PSNR (Peak Signal to Noise Ratio) metric. Each group of 4 bars
describes the relative performance gain due to a certain mask selection under a given recon-
struction algorithm, while the different groups of bars compare the performance gain resulting
by each reconstruction approach. First, we note that the performance loss of a translating mask
over an SLM-based implementation can be quantified at around 1-3 dB, in terms of PSNR.
Second, we observe that the Normalized masks perform consistently better compared to their
Random counterparts, across all algorithms. We also note that, various levels of performance
gain can be achieved by using Shifted-Normalized masks, compared to the Shifted-Random
ones.
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(c) PSNR for reconstructed frames (Monster Scene). (d) PSNR vs Runtime (Monster Scene).

Road Scene

Fig. 3: Simulated reconstruction results: (a) The Monster and Road test scenes used for sim-
ulation; (b) Average reconstruction PSNRs for three different algorithms discussed in section 3
and the four masks discussed in section 4. The SLM-based approach performs 1-3 dB better
than the translating mask approach and the Normalized masks provide an increase of 1-3 dB
in reconstruction quality, compared to their Random counterparts; (c) PSNR for each of the
36 reconstructed video frames of the Monster scene using our proposed Shifted-Normalized
mask. Reconstruction quality varies due to varying motion between subsequent frames in the
video sequence. OMP and GAP perform best, with CLS performing slightly worse. Note that
the selection of a 2⇥2⇥36 patch size for the GAP algorithm is because the code necessitated
that the time dimension of the patch would be a multiple of the spatial patch size. The code
was further tested with a 7⇥ 7⇥ 35 patch and resulted in performance comparable to the one
of the CLS/HP algorithm (not reported here for consistency in the presented number of total
reconstructed frames). FISTA and L1 LS lead to the worst reconstruction quality; (d) PSNR
vs Runtime comparison using 4 algorithms for the reconstruction of the Monster scene. CLS
provides the best balance between reconstruction quality and speed.
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Fig. 4: System design: (1) Moving scene; (2) Objective Lens; (3) Piezoelectric stage; (4) Coded
optical mask; (5) Relay Lens; (6) Sensor; (7) Coded image. See section 5.1 for details.

Fig. 5: Hardware prototype: Our completed camera system with its dust cover removed.

We further test the performance of our hybrid Normalized-Shifted sampling pattern un-
der different algorithms. We compare the obtained results in terms of PSNR and Runtime in
Figs 3(c) and 3(d). Figure 3(c) shows reconstruction quality for each one of the 36 reconstructed
video frames of the Monster scene (see Fig. 3 caption for details). Our results show that, while
GAP and OMP provide the best reconstruction quality, CLS offers the best tradeoff between
reconstruction quality and processing time (see Fig. 3(d)). The reconstruction times for GAP
and OMP are 5⇥ and 25⇥ slower, respectively, compared to CLS for the 256⇥256 pixel Mon-
ster scene. Furthermore, reconstruction times scale fast with image size. Currently, the OMP
implementation using the 10,000 atom dictionary of [31] takes approximately two weeks on
one CPU for a 2 Mpixel image. On the contrary, the CLS algorithm provides outstanding speed
benefits with little sacrifice in reconstruction quality. We believe that the reconstruction speed
benefit when using the CLS approach likely outweighs the small decrease in reconstruction
quality for many potential applications. Furthermore, our analysis informs decisions on qual-
ity versus reconstruction speed tradeoffs that may be made at runtime to best suit a specific
application’s needs.



5. Hardware prototype

5.1. System design

Our hardware prototype consists of five functional components ((2)-(6)) as shown in Fig. 4. A
moving scene, represented as a 3D space-time volume, is imaged by an Edmunds Optics 25
mm C-mount objective lens (EO-59-871). We place an optical mask at the back focal plane
of the objective lens. The silicon-dioxide optical mask is laser etched (JD Photo-Tools, UK)
with the coded patterns described in section 4. The mask is translated laterally across the image
plane by a PX 400 stage from Piezosystemjena. An Edmunds Optics 30 mm f/4 relay lens
(EO-45-759) images the mask and first conjugate plane onto the sensor, a Point Grey Blackfly
20E4M-CS. These components are all mounted in a custom-machined aluminum chassis. Man-
ual micrometer stages allow for fine focal adjustments of the main mask and sensor relative to
the two lenses. The complete system is shown in Fig. 5 with its dust cover removed.

5.2. System calibration

One of the disadvantages of using a translating mask system over an SLM-based system is
that a mechanism for mask motion must be introduced, and the motion must be precisely con-
trolled to avoid systematic errors that negatively impact image quality. Our system features
much higher resolution than other implementations (2 Mpixels instead of .26 Mpixels [1] and
.08 Mpixels [31]). However, the small pixel size of our sensor (4.5⇥ 4.5µm2) requires much
higher mechanical and optical precision, complicating system calibration. A key feature of our
system that enables high spatial resolutions is the incorporation of inexpensive CMOS sensors
(as opposed to CCD, used in [1]). We initially used a rolling shutter based CMOS sensor but
found this system difficult to calibrate due to problems predicting rolling-shutter readout tim-
ing. For this reason, we chose to use the Point Grey Blackfly 20E4M-CS CMOS, which is one
of the highest resolution available CMOS cameras providing a global shutter exposure mode.

Stage movement is another factor leading to system performance deterioration. We operate
the piezoelectric stage at a relatively low frequency of 5 Hz to ensure constant velocity over the
duration of exposure. In the future we are planning on using faster translation speeds, which
would allow for continuous mode operation, enabling capture of longer video sequences. Our
custom built stage ensures precise alignment of sensor, mask, and relay optics. Nonetheless,
small mask rotations and non-unity magnification make it difficult to predict the exact mapping
from mask to sensor during camera operation. Furthermore, due to the very small pixel size, the
mask fabrication process can lead to non-sharp edges, as depicted in the microscope captured
images of two different coded masks in Fig. 6(c). In an attempt to calibrate for mask rotation,
we placed a set of fiducial patterns every 100 rows of the image, which can be seen in the static
mask capture of Fig. 6(a) as well as in the real captured images discussed in section 6.

Our calibration procedure consists of capturing a sequence of images, each one of which
corresponds to the sensor integrating the incoming light through the mask while the mask is
translating between two consecutive stage positions. Following such procedure, we effectively
measure a set of mask patterns Mi, which are then used to populate the sensing matrix F using
Eq. (2). This method is performed in hope of eliminating the need for exact alignment between
mask and sensor pixels. However, the resulting F matrix is no longer identical to the designed
mask pattern, introducing small differences in performance between simulations and experi-
ments. Specifically, Fig. 6(a) shows a picture of an example real non-moving mask together
with its moving captured counterpart in Fig. 6(b). As expected, the moving mask exhibits non-
binary values due to integration during mask translation. Such blurred measured masks were
utilized for filling in the diagonals of matrix F, making therefore the degradation and recovery
processes consistent.



(a) Non-Moving captured mask.

(b) Moving (blurred) captured mask.
(c) Microscope images of 

Non-Moving masks.

Fig. 6: Coded mask detail: (a) Real capture of a static mask (with P = 4 and T = 10) where
fiducial calibration lines are visible, as described in section 5.2; (b) Real capture while the mask
moves by 10 pixels or 45µm horizontally (full duration of acquisition); (c) Microscope images
of two different coded masks (upper part for P = 6 and T = 36; lower part for P = 12 and
T = 36) showing imperfections of the fabrication process.

6. Results

In order to determine the best mask for use in our hardware prototype we perform an experi-
ment comparing reconstruction performance for different values of P and T . For each selected
number of frames to be reconstructed (T ) we select the optimal number of samples per pixel
(P) based on reconstruction performance. Some indicative results are presented in Table 1. The
best results were obtained using a Shifted-Normalized mask for 10 frame recovery sampling
each pixel 4 times while being translated at 10 discrete locations during acquisition.

Table 1: Reconstruction performance for the Monster scene using `1 minimization
(FISTA/DCT) and the proposed mask (see Fig. 2(d)) for different values of P and T .

T 4 10 16 26 36 50 66
P 1 4 5 9 12 17 22

Mean PSNR (dB) 14.43 22.23 21.75 20.63 19.59 19.06 18.51

We present high resolution reconstructions that recover 10 frames of video from a single cap-
tured, coded image employing the Shifted-Normalized mask described above and presented in
Fig. 6(a). The exposure time was set to be 13.456 ms, producing a frame-rate of 10

13.456ms = 743
fps. Our first example is the Metronome scene, shown in Fig. 7. This scene consists of a single
“Jack” playing card placed on a metronome beating at 88 beats per minute. The metronome
speed is carefully chosen leading to small amounts of linear translating motion. The top portion
of Fig. 7 shows the captured coded image. The middle portion presents 3 of the 10 recon-
structed frames using the CLS algorithm with insets below showing closeups of the motion
of the “Jack” card. High-frequency details in the “Jack” are visible in the reconstructions, and
motion is clearly visible between frames. Note, in particular, the location of the letter “J” and
the heart relative to the grid lines. The total motion of the card is approximately 15 pixels over
the entire 13.456 ms exposure. Please see the complete video in Media1.



Figure 8 shows another scene consisting of several balls falling to the ground. This exam-
ple depicts high-speed linear translating motion. Again, the top subfigure shows the captured
coded image, while the bottom subfigures show 3 of the 10 reconstructed frames with close-
ups, using the CLS algorithm. Motion of the soccer ball in the closeups is clearly recovered,
but the motion is significantly greater than one pixel per frame on the sensor. Specifically, the
total motion of the soccer ball is approximately 60 pixels over the entire 13.456 ms exposure,
resulting in a motion blur of several pixels for each of the reconstructed frames. This motion
blur could theoretically be eliminated using a system with higher compression ratio (e.g., 100⇥
instead of 10⇥); however reconstruction quality would invariably suffer as a result. The recon-
structed video also exhibits some ghosting artifacts, which we believe could be eliminated in
future algorithmic implementations. Please see the complete video in Media2. For comparison
purposes, we also provide the reconstruction using the OMP/Dictionary approach in Media3.

The final scene consists of a deck of cards hit by a ball (Fig. 9) such that each card is thrown
towards a random direction. The scene depicts large amounts of arbitrary motion. Reconstruct-
ing motion in this scene is a particularly challenging problem for our compressive video cam-
era. Closeups in the bottom two rows show rotating motion faithfully recovered, but artifacts
are clearly visible. Please see the complete video in Media4.

7. Discussion

We have presented a prototype compressive video camera capable of 2 Mpixel, 743 fps recon-
structions. To the best of our knowledge, this is the largest frame size to date for any compres-
sive video camera. However, analyzing spatial resolution for compressive video cameras is a
very challenging problem since performance depends equally on the mask pattern, reconstruc-
tion algorithm, calibration of the experimental setup as well as the amount of motion in the
scene. In future work, we plan to perform a thorough analysis to establish the maximum spa-
tial resolution that our camera can achieve. In addition, we introduced a new translating mask
pattern that leads to improved performance compared to the translating masks previously used
by Llull et al. [1]. We demonstrated several examples of high-resolution videos reconstructed
from data captured with our system, testing performance for a variety of motion types.

The reconstruction algorithms evaluated in this paper only consider a single captured coded
image. There is potentially performance gain in formulating the reconstruction algorithm to
enforce temporal smoothness over multiple captured frames. This is not possible with the cur-
rent global shutter sensor since the readout time between consecutive captured frames spans
the duration of multiple subsequent frames in the captured scene that would lead to large gaps
in the reconstructed video sequence. This may actually be a reason to return to a rolling shutter
readout mode, though it would pose challenges in mask calibration.

Future success of our compressive video sensing architecture relies on elimination of sys-
tematic errors that negatively affect reconstructed image quality. The most practical hardware
setup is one that would not require precise alignment and synchronization between the mask
and sensor. An ideal system would apply spatio-temporal modulation electronically using sen-
sor readout circuitry. Such as sensor would provide the same compressive video capture without
the need for any extra optics (e.g., coded mask, stage, or relay lens), enabling compressive video
capture to be implemented in an extremely compact package. To the best of our knowledge, no
such sensor is currently commercially available, however, it is feasible that one could be built.
We hope to develop such a custom sensor in the near future.

Finally, increasing frame-rate necessarily requires fewer photons to be collected by each
frame, whether using native high frame-rate cameras or compressive video capture. As future
work enables faster reconstruction frame-rates, the limits imposed by noise on reconstruction
quality will need to be explored more thoroughly.



(a) Captured coded image.

(c) Reconstructed frame 1. (d) Reconstructed frame 5.

(f) Frame 1 closeup. (g) Frame 5 closeup.

(i) Closeups of all 10 reconstructed frames.

(b) Closeup of (a).

(e) Reconstructed frame 10.

(h) Frame 10 closeup.

Fig. 7: Reconstruction of the Metronome scene using the Constrained Least-Squares method
with a high-pass filter. The scene consists of small amounts of translating motion. Parts (a)-(b)
show the captured image; Parts (c)-(h) present 3 of the 10 reconstructed frames; Part (i) depicts
closeups on the translating “Jack”. Please see the complete video in Media1.



(a) Captured coded image. (b) Closeup of (a).

(c) Reconstructed frame 2. (d) Reconstructed frame 5. (e) Reconstructed frame 9.

(f) Frame 2 closeup. (g) Frame 5 closeup. (h) Frame 9 closeup.

(i) Closeups of all 10 reconstructed frames.

Fig. 8: Reconstruction of the Ball scene using the Constrained Least-Squares method with a
high-pass filter. The scene consists of large amounts of translating motion. Parts (a)-(b) show
the captured image; Parts (c)-(h) present 3 of the 10 reconstructed frames; Part (i) depicts close-
ups of the falling soccer ball. Please see the complete video in Media2 and the corresponding
Orthogonal Matching Pursuit/Dictionary reconstruction in Media3

.



(a) Captured coded image. (b) Closeup of (a).

(c) Reconstructed frame 2. (d) Reconstructed frame 5. (e) Reconstructed frame 9.

(f) Frame 2 closeup. (g) Frame 5 closeup. (h) Frame 9 closeup.

(i) Closeups of all 10 reconstructed frames.

Fig. 9: Reconstruction of the Deck of Cards scene using the Constrained Least-Squares method
with a high-pass filter. The scene consists of large amounts of arbitrary motion. Parts (a)-(b)
show the captured image; Parts (c)-(h) present 3 of the 10 reconstructed frames; Part (i) depicts
closeups of the rotating “Jack”. Please see the complete video in Media4.


