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Abstract:  In both lensless Fourier transform holography (FTH) and 
coherent diffraction imaging (CDI), a beamstop is used to block strong 
intensities which exceed the limited dynamic range of the sensor, causing a 
loss in low-frequency information, making high quality reconstructions 
difficult or even impossible. In this paper, we show that an image can be 
recovered from high-frequencies alone, thereby overcoming the beamstop 
problem in both FTH and CDI. The only requirement is that the object is 
sparse in a known basis, a common property of most natural and manmade 
signals. The reconstruction method relies on compressed sensing (CS) 
techniques, which ensure signal recovery from incomplete measurements. 
Specifically, in FTH, we perform compressed sensing (CS) reconstruction 
of captured holograms and show that this method is applicable not only to 
standard FTH, but also multiple or extended reference FTH. For CDI, we 
propose a new phase retrieval procedure, which combines Fienup’s hybrid 
input-output (HIO) method and CS. Both numerical simulations and proof-
of-principle experiments are shown to demonstrate the effectiveness and 
robustness of the proposed CS-based reconstructions in dealing with 
missing data in both FTH and CDI. 
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1. Introduction  

Lensless imaging with coherent X-rays has demonstrated great potential in recent years in the 
field of biology and material science [1-3]. Instead of forming images directly, the technique 
captures a far-field diffraction pattern, then recovers an image computationally. However, the 
method requires phase retrieval because only the intensity of the scattered signal is detected 
on the sensor. There are two fundamental solutions to the phase retrieval problem: holography 
and image reconstruction by iterative phase retrieval [8-13]. Accordingly, two lensless 



imaging modalities have been proposed and are commonly used in experiments: Fourier 
transform holography [4-7] and Coherent Diffraction Imaging (CDI) using iterative phase 
retrieval. 

FTH is a non-iterative lensless imaging technique in which the phase information of the 
scattered wave is encoded in the intensity of the diffraction pattern and the desired image is 
recovered in a single-step deterministic computation [4-6]. This is achieved by introducing a 
reference wave generated from a point source in the vicinity of the object. The interference 
between the reference wave and the object wave forms a hologram in the far-field plane of the 
object. The object is then retrieved by a simple inverse Fourier transform of the recorded 
hologram. For FTH, the resolution is limited by the size of the reference point source, which 
is inversely proportional to the reference flux. To improve the resolution while maintaining 
sufficient reference intensity, various holography schemes have been developed. Examples 
include multiple reference FTH [14], uniformly redundant arrays (URAs) reference FTH [7], 
and holography with extended reference by autocorrelation linear differential operation 
(HERALDO) [15-17]. 

CDI is another commonly used lensless imaging technique in the X-ray regime. In CDI, 
the intensity of the diffraction field should be at least Nyquist sampled and phase is recovered 
iteratively [8, 9]. In these algorithms, at each iteration, constraints are imposed in both Fourier 
space and real space. The Fourier constraints are the intensity values measured by the detector 
and the real-space constraints are the object support, which may be known a priori or 
estimated from the object’s autocorrelation [12]. In principle, the resolution of reconstructed 
CDI images depends on the maximum diffraction angle and the illumination wavelength. 

A fundamental problem common to both CDI and FTH is the presence of missing data, as 
shown in Fig. 1. Due to the limited dynamic range of CCDs, a beamstop is often used to block 
the central region of the diffraction pattern. Since this region corresponds to low-spatial-
frequencies in the object, losing this data makes image reconstruction difficult or even 
impossible [19-22]. Attempts to overcome this problem fall into three categories: (1) replace 
the missing data with a calculated Fourier modulus of a lower resolution image of the object 
captured from an x-ray or electron microscope [1, 18]. (2) Design a semi-transparent beam 
stop [21]. (3) Develop new reconstruction algorithms to address the missing data problem. For 
example, a modified hybrid input-output (HIO) is proposed in [22] to reconstruct the object 
with a single intensity measurement. 
 

 
Fig. 1. Beam stop in (a) CDI and (b) FTH, causing central low-frequencies information to be 
lost in the diffraction pattern.  



 
In this paper, we propose the application of Compressed Sensing (CS) to solve the missing 

data problem for both FTH and CDI. Our method provides robust phase-retrieval of diffracted 
fields with large amounts of missing data using just a single measurement. CS [23-27], a 
recently developed theory, is based on the underlying assumption that the object of interest 
can be represented sparsely in a suitable basis. CS literature states that such an object can be 
recovered from an incomplete set of linear measurements [23]. Since its advent, CS has been 
utilized in a variety of applications to solving missing data problem. For instance, in Fresnel 
holography, a 3D tomographic reconstruction has been demonstrated from 2D holographic 
data [28], and 2D images have been reconstructed from incomplete holographic 
measurements [29]. In magnetic resonance imaging (MRI), an MRI image can be recovered 
from under-sampled k-space data, significantly reducing acquisition time [30]. Recently, CS 
has been applied to super-resolution imaging, where high resolution images are recovered 
from low-frequency information alone [31, 32]. Also, some CS related phase retrieval 
algorithms [33] have been proposed to solve missing phase problem. In this work, we show 
that an image can be accurately recovered from high frequencies alone using a CS 
reconstruction method. The concept is applied directly to both FTH and CDI acquisition 
schemes, overcoming the missing data problem caused by high-dynamic range diffracted 
fields. The application to FTH is direct, as the captured hologram is linearly related to the 
reconstructed image via a Fourier transform. For CDI, the measured diffraction pattern is a 
nonlinear (quadratic) function of the unknown image. However, we show that the quadratic 
relationship can be relaxed to be linear if phase is first recovered using Fienup’s Hybrid Input-
Output (HIO) algorithm [8]. We propose a new technique which combines HIO and CS 
methods to deal with missing data problem in CDI. We show that the proposed method 
outperforms the conventional HIO algorithm even when using a large beam stop that produces 
a significant amount of missing data (i.e. very wide dynamic range diffraction patterns). 

2. Compressive sensing background 

CS theory ensures highly accurate signal reconstruction from far fewer measurements than 
traditional methods. For simplicity, let us describe CS in one dimension. Let an unknown 
signal f defined by an N-element vector be projected to g, an M-element vector. One can think 
of g as the measurement of f. In CS, we are interested in the case of M<N, meaning that the 
number of knowns is less than the number of unknowns. In the case of FTH and CDI where 
the central data of the diffraction pattern is missing due to the presence of a BS, N is the 
number of pixels of reconstructed image, M is the number of pixels of diffraction pattern with 
missing central data, and (N-M) is the number of missing pixels in the center. The sensing 
process in CS can be written as (1) 

 ,g f=Φ   (1) 
Where Φ is an M×N sensing matrix. Equation (1) is under-determined because the number of 
unknowns in f is more than the number of measurements in g. As a result, the reconstruction 
of f from Eq. (1) is not unique unless additional information is provided. CS tries to find 
unique reconstruction by enforcing sparsity constraint on the signal. 

We assume that the signal f can be sparsely represented in some arbitrary basis Ψ, i.e., 
wavelets, discrete cosine transform (DCT), or total variation (TV). Thus, the K-sparse signal f 
can be expanded in its sparsity basis Ψ = (ψ1ψ2···ψN) as follows:  
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where 1 2( )TNα α α α= ⋅⋅⋅  is the coefficient sequence, which has only K nonzero entries 
and (N-K) entries that are exactly zeros. 

CS theory [23-27] suggests that if f is K-sparse in Ψ as shown in Eq. (2), then even with 
much fewer measurements than traditional methods, an accurate and unique reconstruction 
from Eq. (1) can be obtained by solving the following l1 minimization problem: 
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α α=∑  is l1 norm of .α  Finally, the unknown signal f can be found by 

multiplying the reconstructed coefficients and the dictionary basis, according to Eq. (2). 
Essentially, CS seeks a solution with maximum sparsity in the given domain while 
maintaining fidelity to the measurement. As shown in [34], the CS-based algorithms are able 
to produce acceptable solutions even with noisy and incomplete measurements. In this case 
the equality sign in Eq. (3a) becomes inequality, as 
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where 
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⋅ denotes l2 norm and ɛ is the size of the noise in the measurement.   

 

3. Image reconstruction from high frequencies only 

In this section, we show how a CS approach can help recovering an image from high 
frequencies alone. The measurement with missing low frequencies can be modeled as 

 ,HO HFo=   (1) 
where H is a high pass filter, F denotes Fourier transform matrix, o is an unknown object, and 
OH is high pass filtered frequency spectrum of o. Since the low-frequencies are lost in OH 
reconstruction of o from OH is an ill-posed problem. If we inverse Fourier transform Eq. (4), 
there are an infinite number of solutions possible (i.e., assigning missing low-frequencies with 
different values while keeping the measured high-frequencies unchanged). Conventionally, an 
interpolation is often applied to OH in the Fourier domain. However, it is difficult to estimate 
the unknown coefficients accurately from nearby Fourier samples alone.   

In order to recover the missing low frequency information from OH, additional information 
must be provided. Here, we exploit knowledge that the image is sparse in some basis and try 
to reconstruct it using a CS method. Specifically, we enforce the sparsity constraint on the 
total variation (TV) [35] of o, and recover o by solving optimization problem  

 min  subject to ,Ho TV
o o O HFo= =Â   (2) 

where ( )
1 2

1 2

,TV n n
n n

o o= ∇∑∑  is TV of o. As in Eq. (3b), when noise is present in the 

measurement, the equality constraint in Eq. (5) changes to an inequality. By solving Eq. (5), 
we recover the object with minimal complexity (here TV) and also maintain fidelity to the 
observed data via the constraints on the high frequencies of the reconstruction. Note that Eq. 
(5) is convex [24, 35] and can be solved efficiently with a generic log-barrier algorithm [36]. 

This CS technique is demonstrated in the simulation of Fig. 2, showing the ability to 
recover the unknown signal and its missing low-frequencies in a robust fashion. The original 
data in Fig. 2(a) represents an image of 256×256 pixels. The spatial frequency spectrum of 
this image is shown in Fig. 2(b), where the black square marks the cutoff boundaries of the 
high-pass filter. Here, all the low-frequencies below the cutoff are missing, which is 25% of 
the total data, concentrated in the center of the Fourier transform. The conventional 
reconstruction produces a high pass filtered version of the original image [Fig. 2(c)]. With a 
CS reconstruction, the image is recovered accurately [Fig. 2(d)]. 
 



 
(a) Object                 (b) FT measurement     (c) IFT reconstruction   (d) CS reconstruction              

   
Fig. 2. (a) Object, (b) The Fourier spectrum of the object, the black rectangle mimics the beam 
stop, (c) conventional reconstruction by taking the inverse Fourier transform of the incomplete 
measurement, (d) CS reconstruction. 

 

4. Fourier transform holography (FTH) 

4.1 Description 

We now show how to apply CS to solve the missing data problem in FTH, due to the presence 
of a beam stop (BS). In standard FTH [4-6], the exiting wave f(r) after the sample mask 
consists of the object of interest o(r) and a reference point δ(r-r0), e.g.,  

 ( ) ( ) ( )0 .f r o r r rδ= + −   (3) 
Then the hologram intensity I can be described as the Fourier transform of the autocorrelation 
of the function f(r) [5, 6], which is  

 ,f fI FA=   (4) 
where Aff  is the autocorrelation of f, given by  

 ( ) ( ) ( ) ( ) ( )0 0 .f f ooA r A r A r o r r o r rδδ
∗= + + − + +   (5) 

The last term is simply a translated image of the object of interest, and it can be separated 
from the other three terms provided that the distance r0 between the reference point and the 
object exceeds the diameter of the object (so-called holographic condition). If we measure the 
entire hologram, the object image can be reconstructed by a simple inverse Fourier transform. 
However, in our case, the hologram has a region of missing data due to the presence of a BS. 
The incomplete measurement can be modeled as  

 ,H f fI HFA=   (6) 
where H is a high-pass filter and IH denotes the high-pass filtered hologram. Equation (9) is 
also under-determined and reconstruction of Aff from IH is an ill-posed problem. 

For a conventional holographic reconstruction, we simply perform an inverse Fourier 
transform on IH. Then Eq. (9) becomes 

 ( )1 1 ,H f fF I F H A− −= ∗   (7) 

where F-1 is an inverse Fourier  transform (IFT) operator and * denotes the convolution. Here, 
we interpret F-1H as a system point spread function (PSF). Since H is a high pass filter, the 
intuitive meaning of the PSF is simple: it degrades the image by emphasizing its edges, 
causing a ringing effect that loses image details (high-pass-effect). By substituting Eq. (8) into 
Eq. (10), we can clearly see that there are two problems that affect reconstruction quality. 
First, all four terms in Eq. (8), including the object term, will be degraded by the system PSF. 
Second, due to the ringing effect, the autocorrelation of the object, which otherwise lies in the 
center of the reconstruction, may spread over the entire image and therefore, overlap with the 
object causing the holographic condition to fail. 

Using a CS algorithm can ensure accurate image reconstruction from high frequencies 
alone. By exploiting sparsity in the TV domain, we can reconstruct Aff by solving the 
following convex problem: 



 min  subject .to 
f f

f f f f f fHTVA
A A I HFA= =Â   (8) 

Note that according to Eq. (8), Aff contains an image of the autocorrelation of the object o, and 
it can be separated from the other three terms if the holographic condition is met. Again, as 
shown in Eq. (3b), in the presence of noise, the equality constraint in Eq. (11) changes to an 
inequality. We remark that although the above derivation is for standard FTH, the results 
extend to FTH with multiple references [14] or holography with extended reference by 
autocorrelation linear differential operation (HERALDO) [15-17]. 

4.2 Simulation results 

Figures (3) and (4) show numerical simulations for image reconstructions from a single 
hologram with missing central data in multiple reference FTH and HERALDO schemes, 
respectively. In Fig. 3, an 88×88 pixel object and 2 reference points are embedded into a 
512×512 sample mask [Fig. 3(a)]. The holographic condition is satisfied and the exiting wave 
after the sample mask is generated by assuming a plane wave illumination. The hologram at 
the far-field plane is calculated as the squared magnitude of the Fourier transform of the exit 
wave. 41×41 pixels are zeroed out at the center of the hologram to represent the region which 
is unmeasured due to the BS, as shown in Fig. 3(b). A reconstruction using an inverse FT is 
shown in Fig. 3(c), which demonstrates severe artifacts. Using our CS method, the object and 
the twin image are successfully reconstructed without artifacts, as shown in Fig. 3(d). 
 

 
(a) Object and two           (b) Incomplete FT        (c) Conventional          (d) CS reconstruction 
     point references                measurement                reconstruction 
 

Fig. 3. Image reconstruction from a single hologram with missing central data in multiple 
references FTH. (a) Sample mask contains an object and 2 references. (b) Simulated hologram 
with 41×41 pixel region missing in the center. (c) Inverse FT of (b) by setting unmeasured 
region to zero. (d) CS reconstruction from (b). 

 
HERALDO is a generalization of FTH that uses an extended object as a reference and 

therefore, increased reference flux. Image reconstruction by HERALDO requires computation 
of derivatives of the autocorrelation Aff [15-17]. Figure 4(a) shows the same scene as in Fig. 3, 
but with a thin slit reference object. The simulated hologram (processed as suggested in the 
reference [15]) with 41×41 pixels missing in the center is shown in Fig. 4(b). The 
reconstruction, obtained using an IFT, is shown in Fig. 4(c), which has severe artifacts. 
However, when we apply our CS method, we achieve near perfect reconstruction without 
losing low-frequency details, as shown in Fig. 4(d). The results displayed in Figs. (3) and (4) 
clearly demonstrate that the CS method is robust against the missing data problem. 
 
 
 
 



 
(a) Object and line          (b) Incomplete FT        (c) Conventional          (d) CS reconstruction 
         reference                     measurement                reconstruction 
 

Fig. 4. Image reconstruction from a single hologram with missing central data in HERALDO. 
(a) The sample mask contains an object and a thin slit reference. (b) Simulated processed 
hologram with 41×41 pixels region missing in the center. (c) Inverse FT of (b) by setting 
unmeasured region to zero. (d) CS reconstruction. 

 
To determine how reconstruction quality depends on the amount of missing data and 

noise, we perform a set of simulations with a “phantom”. Reconstructed images from a 
hologram with varying percentages of missing data are shown in Fig. 5 (left). Signal-to-noise 

ratio (SNR), defined as ( )2 2
1010 log / ( ) ,SNR S N⎡ ⎤= ⋅ ⎣ ⎦∑ ∑  where S and N represent 

the signal and noise, are also calculated to characterize the reconstruction and the 
measurement on the detector. Note that the intensities behind the beamstop are not included in 
the measurement SNR calculation. The SNR of CS reconstructions is plotted against sensor 
noise (Poisson noise) in Fig. 5 (right). From the Fig. 5, it is clear that, for the IFT 
reconstruction method, SNR degrades significantly even with small amounts of missing data. 
However, SNR for our CS reconstruction method remains high quality even for large amounts 
of missing data in the Fourier domain [23]. 
 

 
      Measurement             IFT         CS reconstruction 
 

Fig. 5. Left:  Reconstructed images with different missing area sizes for 35db noise, using IFT 
and CS algorithms. Right: The SNR of reconstructed images is plotted against missing area 
sizes using IFT and CS methods. Plots for different noise levels are shown in different colors. 

 

4.3 Experiments on FTH 

We now describe some experimental results illustrating the CS approach applied to FTH. The 
experimental configuration, shown in Fig. 6.1, is comprised of a collimated laser beam from a 
laser-diode (532 nm), transmitted through an object mask O. The object mask O is comprised 
of part of a resolution target of about 1cm×1cm size with a reference point. The reference hole 
is placed on the top left of the mask, which is about 2.5cm away from the center of the object. 
The lens L2 (f=300mm) was used to perform a 2D Fourier transform of the object which is 
collected by a point gray CCD sensor. The measured intensity pattern is shown in Fig. 6.2(a), 



the red rectangle mimics a beam stop. Figure 6.2(b) shows the direct Fourier transform of the 
intensity pattern with complete data while Fig. 6.2(c) represents the Fourier transform after 
removing the central data within the red rectangle, which shows a poor reconstruction. 
However, CS based reconstruction from the incomplete measurement shows good 
reconstruction, as shown in Fig. 6.2(d). 

 

 
Fig. 6.1. FTH experimental setup. L1: collimator, O: object mask: containing an object and a 
point reference, L2: Fourier transforming lens. 

 

 
     (a) Measurement      (b) IFT reconstruction  (c) IFT reconstruction   (d) CS reconstruction 
                                                                            from incomplete data   from incomplete data 
 

Fig. 6.2. FTH real experiment. (a) Captured hologram, the red rectangle denotes the missing 
data area of 41×41 pixels. (b) IFT reconstruction from the complete hologram. (c) IFT 
reconstruction from incomplete hologram. (d) CS reconstruction from incomplete hologram. 

 

5. Coherent Diffraction Imaging (CDI) 

5.1 Description and simulation results 

In CDI, the intensity of the diffraction pattern of an object is measured in the far-field, and 
then phase is retrieved using iterative algorithms. However, when data in the diffraction 
pattern is missing due to a beam stop, reconstruction artifacts become apparent and some 
structural information about the object is permanently lost.  

In order to demonstrate the missing data problem with the HIO algorithm [8, 9], we 
performed simulations with different amounts of missing data. A 128×128 pixel object is 
embedded into a 512×512 array [Fig. 7(a)]. Figure 7(b) shows simulated diffraction intensity 
with 512×512 pixels. The central 31×31 pixels in the simulated captured image are removed 
to mimic effect of a beamstop.  

In HIO iterative algorithm, we start with an initial random guess of the object. The 
following steps are then carried out in the (k+1)-th iteration. 

1.   Compute the Fourier transform (FT) { }1 ,k kG F g
∧

+ =  where kg is an object 
reconstruction in the k-th iteration.  

2.   Replace the modulus of  1kG
∧

+  with the square root of the diffraction intensities |G|. 
Note that since the intensities are unmeasurable behind the beamstop, the modulus 
within missing area is kept unchanged. That is,  

 ( )
( ) ( )

1
1

1

,                 for ,

exp ,   for , .

k
k

k

G fx fy BG
G i fx fy Bφ

∧

+
+

+

⎧ ∈⎪
= ⎨

∉⎪⎩

  (9) 

where B denotes the beamstop and 11 arg kk Gφ
∧

++ =  is the phase of 1kG
∧

+ . 



3.   Calculate the inverse FT of Gk+1, we have { }1
11 .kkg F G

∧
−

++ =  

4.   Update the solution 1kg
∧

+  using the HIO method as:  
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where C denotes the object support and β is typically selected to be in the interval (0.5, 1) (we 
used β = 0.95). Image reconstruction using the HIO algorithm is shown in Fig. 7(c). 
Significant artifacts are visible in the reconstructed image. 
 

 
        (a) Object                  (b) Incomplete       (c) HIO reconstruction            (d) HIO+CS   
                                            measurement                                                       reconstruction 

 
Fig. 7. Reconstruction of a diffraction pattern with missing central data. (a) An original 
128×128 pixels image is embedded in a 512×512 pixels array. (b) The diffraction intensity 
pattern. The data at the central 31×31 pixels are removed. (c) HIO reconstruction after 2000 
iterations (d) reconstruction after 2000 iterations using proposed HIO+CS algorithm. 

 
 

 
Fig. 8. Left: Reconstruction error vs. iteration number of the missing data region (black) and 
high frequency region (blue) for conventional HIO. Reconstruction error of the missing data 
region (red) for the proposed HIO+CS algorithm. Right: The block diagram of the proposed 
HIO+CS method. 

 
Figure 8 (left) shows Fourier space RMSE vs. iteration number for the example in Fig. 7. 

Error is shown for both the central low-frequency region (black) as well as the high-
frequencies region (blue). It is clear from the plot that HIO recovers phase accurately in the 
high frequency region and poorly in the low frequency region. This is because no constraints 
are provided to force low-frequencies to converge to the correct values. Our approach to 
solving this problem is as follows: We simply delete the inaccurate low-frequency data from 
the HIO reconstruction, then apply a CS reconstruction using the accurately recovered phase 
information from high-frequencies alone. We call this the HIO+CS algorithm. If needed, the 
reconstruction from HIO+CS can be used as new initial guess for HIO, increasing the 
convergence of phase retrieval algorithm. The block diagram in Fig. 8 (right) shows how HIO 



and compressive sensing are combined into a single reconstruction process. The process starts 
with the incomplete diffraction pattern then goes through several HIO iterations. Because of 
the missing central data, HIO recovers only high frequency information. In the next step, CS 
retrieves the lost low frequency information. An optional final step is to again perform several 
HIO iterations, which may help to improve the result. 

The result of applying the HIO+CS algorithm to the simulated diffraction data in Fig. 7(b) 
is shown in Fig. 7(d). 1000 HIO iterations were first applied, then a single CS step, followed 
by 1000 more HIO iterations. The low-frequencies in the HIO+CS algorithm approached the 
true values as shown in the red curve in Fig. 8 (left). Note that in both HIO and HIO+CS 
reconstructions, we used the same initial seed and same number of iterations. The impact of 
missing data size and noise (Poisson noise) is shown in Fig. 9. The HIO+CS algorithm is 
shown to produce high quality reconstructions in comparison to conventional HIO. 

 

 
 Measurement            HIO                HIO+CS 
 

Fig. 9. Left: reconstructed images with different missing area sizes using HIO and HIO+CS 
algorithms (Only central 200×200 pixels are shown out of 512×512). Right: The SNR of 
reconstructed images is plotted against missing area sizes using HIO and HIO+CS algorithms. 
Plots for different noise levels are shown in different colors. 

 

5.2. CDI experiments 

We now describe some experimental results illustrating the HIO+CS approach. The 
experimental configuration, shown in Fig. 10.1, is essentially same as used for FTH. The only 
difference is the aperture stop used before the object to apply the aperture constraint in HIO. 
The object used is a resolution target with aperture support S which is a circular mask of 
diameter 1.25 cm. The measured intensity pattern is shown in Fig. 10.2(a), the red rectangle 
mimics a beam stop. Figure 10.2(b) shows the HIO reconstruction with complete data. Figure 
10.2(c) shows a HIO reconstruction with missing data after 2000 iterations. Figure 10.2(d) 
shows an HIO+CS reconstruction, which is considerably better quality than the conventional 
HIO reconstruction. 
 

 
Fig. 10.1. CDI experimental setup. L1: collimator, S: aperture stop, O: object, L2: Fourier 
transforming lens. 

 



 
   (a)   Measurement                (b) HIO                          (c) HIO                     (d) HIO+CS 
                                          (complete data)            (incomplete data)          (incomplete data) 

 
Fig. 10.2. CDI experiment. (a) Captured diffraction pattern with red rectangle showing the 
removed part. (b) HIO reconstruction after 2000 iterations with complete data (c) HIO 
reconstruction after 2000 iterations with missing data (d) HIO+CS Reconstruction (2000 HIO 
iterations total). 

 

6. Discussion and conclusions 

We have proposed CS-based reconstruction methods to solve the missing data problem in 
both lensless FTH and CDI by exploiting signal sparsity in a known domain. We showed that 
CS can be used to accurately recover signals from high-frequencies alone.  

For FTH, we analyzed the effects of missing data on reconstruction quality. Conventional 
FTH reconstructions suffer from (1) artifacts caused by overlap between autocorrelation of the 
image and the image itself (even when the holographic condition is satisfied) and (2) artifacts 
due to missing low-frequency information. However, we demonstrated near perfect recovery 
using our proposed CS-FTH method, even with significant amounts of missing central data in 
captured holograms. We also demonstrated the accuracy of our technique for multiple 
reference FTH and extended reference FTH schemes, such as HERALDO.  

For CDI, we analyzed the effects of the missing data problem on the HIO reconstruction 
method. We found, surprisingly, that the error of reconstructed phase is largely contained to 
within the area of the missing data, while the phase of high-frequencies outside this area is 
accurately recovered. As a result our HIO+CS based reconstruction algorithm can be used to 
robustly recover high quality images from CDI data captured with a beam stop.  

We believe the work presented in this paper will help to understand the effects of the 
missing data problem on FTH and CDI techniques. In addition, the CS-based algorithms 
proposed in this paper will provide a new and efficient way to reconstruct high quality images 
despite large amounts of missing data in both lensless FTH and CDI regimes. Although we 
have used amplitude only objects to demonstrate the concept, CS algorithms have been 
developed for complex objects [37]. Therefore, we expect that our method should also be 
capable of reconstructing complex objects as well. Our next steps will be to apply our 
technique to data captured using X-ray synchrotrons (e.g. the Advanced Photon Source at 
Argonne National Labs). We would also like to theoretically analyze the relationship between 
the beam stop size and the mutual incoherence of the corresponding high-pass filter matrix. 
Such a study could give greater intuition into the performance limits of the techniques we 
propose here.   
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