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B
ecause art is inherently visual, the use of imaging has 
long been an important way to understand its structure, 
form, and history. Recently, new ways of engaging with 
objects from our shared cultural heritage are possible with 

advances in computation and imaging that allow scientists to 
analyze art noninvasively, historians to pose new social ques-
tions about the art, and the public to explore and interact with 

art in ways never before possible. There is a rich history in 
applying image processing techniques to conventional 

photographic images of works of art, many of which 
have been highlighted in previous special issues of 

IEEE Signal Processing Magazine (e.g., the 2008 
and 2015 July issues). Building on these contribu-
tions, this article comprises a survey of techniques 
where computation is central to the image acqui-
sition process. Known as computational imag-
ing, the methods being pioneered in this field are 
increasingly relevant to cultural heritage applica-
tions because they leverage advances in image 
processing, acquisition, and display technologies 

that make scientific data readily comprehensible to 
a broad cohort of nontechnical researchers interested 

in understanding the visual content of art. Presently, 
only a small research community undertakes computa-

tional imaging of cultural heritage. Here we aim to intro-
duce this growing new field to a larger research community 

by discussing: 1) the historic background of imaging of art, 2) 
the burgeoning present day community of researchers interest-
ed in computational imaging in the arts, and finally, 3) our 
vision for the future of this new field.

Introduction
The use of electromagnetic radiation, beyond the limits of 
eyesight, to visualize artworks may be traced to 1895 when 
Roentgen made his first X-ray shadowgraphs, one of which 
happened to have been a painted surface. However, it was 
not until the 1930s, when X-radiography first entered into 
museums, that a new art history formed around the ability to 
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assess style and attribution of an artwork from aspects of the 
painted surface not visible to the naked eye [1]. This trend 
continued with other wavelengths of illumination. Specifi-
cally, ultraviolet (UV)-induced visible fluorescence helped 
reveal areas of loss/repair and provided a general sense of 
chemical composition [2]. By the late 1960s, infrared (IR) 
reflectography was in routine use in muse-
ums to reveal hidden underdrawings and 
preparatory marking in paintings [3]. More 
specialized techniques, such as autoradiog-
raphy achieved by neutron bombardment of 
a work of art, opened up the possibility of 
combining elemental composition together 
with imaging for the first time [4]—a tech-
nique that would inspire further develop-
ments in X-ray f luorescence imaging 
several decades later [5]. By the 1980s, new 
three-dimensional (3-D) acquisition tech-
niques were being explored for the 3-D doc-
umentation and display of cultural objects, 
both of which remain relevant subjects of 
investigation to this day [6].

The recent explosion in imaging of cul-
tural heritage has grown mainly out of the 
fields of remote sensing and color science. 
Of particular note is the use of hyperspectral and multispectral 
imaging instruments for pixel-by-pixel material characteriza-
tion [7]. A parallel development has been the use of synchro-
tron-based X-ray fluorescence and diffraction imaging that has 
grown in conjunction with the diversification of users of these 
large-scale facilities from all research disciplines. Around the 
same time, computational illumination techniques were devel-
oped to dynamically relight works of art in postcapture [8], 
[9]. With the advent of inexpensive digital scanners, several 
researchers have focused on digitization of existing X-radio-
graphs of canvas paintings, enabling recent advances in image 
processing algorithms to be applied to these historical works, 
such as in the canvas weave project initiated at Cornell Uni-
versity [10], [11]. The proliferation of inexpensive digital sen-
sors have been allowing museums to capture large amounts of 
high-resolution photographs in multiple modalities that were 
then computationally stitched together to provide seamless 
image mosaics with unprecedented detail [12]. Optical coher-
ence tomography [13] and THz imaging [14] provide in-situ 3-D 
reconstructions of microscopically thin layers of paint compris-
ing pictures and drawings. At the other extremes of scale, the 
popularity of both light detection and ranging (LiDAR) [15] and 
structure-from-motion (SfM) techniques [16] have allowed us to 
search for ancient cities and document the historic landscapes of 
modern ones.

In this article, recent developments are discussed in four core 
areas that have served to advance the field of cultural heritage 
into new territory: multispectral and hyperspectral imaging, 
3-D shape scanning and recovery, image relighting, and macro 
X-ray imaging. Key developments in each of these areas have 
dramatically changed the landscape of how one noninvasively 

documents, assesses, interprets, and conserves culturally signifi-
cant artifacts housed in museums around the world.

Multispectral and hyperspectral imaging
Human eyes only perceives visible light (380 nm + 750 nm) with 
three types of color-sensitive cones: “red,” “green,” and “blue.” 

Multispectral and hyperspectral techniques 
extend the measurable spectrum from visi-
ble light to UV (10 nm + 380 nm) and IR 
(750 nm + 1 mm) lights with increased reso-
lution: typically multispectral imagery has 
three to ten bands, while hyperspectral 
imagery could have hundreds or even thou-
sands of narrower (e.g., 10 nm) bands. Multi-
spectral and hyperspectral imaging provide 
a wealth of information across space and 
wavelengths comprising large swaths of the 
electromagnetic spectrum. The techniques 
are also flexible since they can be scaled 
from the imaging of landscapes, when used 
on satellites and telescopes, down to the 
microscopic. Also, importantly, these imag-
ing spectroscopies are nondestructive under 
the normal conditions of their implementa-
tion. Liang’s recent review [17] should be 

consulted for developments in the field through 2012, but a brief 
introduction is provided here.

There are typically three principal ways of obtaining multi/
hyperspectral data sets: 
1) imaging the entire object at once through a series of differ-

ent filters (or through a single filter whose bandpass char-
acteristics may be controlled), e.g., in 2004, Lumiere 
Technology (http://www.lumiere-technology.com/Pages/
Services/services2.htm) used 13 filters from UV to IR and 
a 240-megapixel camera to image the famous “Mona Lisa” 
in the Louvre Museum 

2) scanning a linear slit view of the object through a grating 
that spreads the relevant spectral region onto a two-dimen-
sional (2-D) sensing array 

3) scanning the entire object point by point across its x-y sur-
face [18]. 

Aspects of cost, time, and instrumental design parameters 
will dictate the choice of image acquisition method.

The resulting x-y surface images are “stacked” as a function 
of wavelength thus creating an image cube that may be inter-
rogated in two ways. If the cube is “sliced” parallel to the x-y 
image face, one can analyze each of the images taken at each 
wavelength. Such an analysis at infrared wavelengths might 
readily provide an image of an underdrawing beneath the sur-
face of a painting. If the stack is rotated by 90° degrees to x-y 
image face of the cube, one can obtain the detected spectrum 
at every pixel. Because chemical components have distinguish-
able spectral responses, multivariate statistical methods such 
as principal component analysis (PCA) can provide informa-
tion on the spatial distribution of different materials. Examin-
ing the PCA images, spectral angle maps of end members, or 
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mapping regions of interest provide a wealth of information 
on the composition, execution, and condition of the art object 
even when an artist never employed a pure pigment in their 
composition and the consequential endmember spectra do not 
correspond to pure pigments.

Traditionally, these methodologies deal with spectroscopic 
data in the near UV, visible, and near IR. Recently, however, 
macro X-ray fluorescence (XRF) scanning and macro X-ray 
diffraction (XRD) scanning have moved these applications 
into a revolutionary new area of analysis (see the section 
“Macro X-ray Methods” for more details). In addition, recent 
work involving mid-IR imaging [19] promises a wealth of new 
opportunities in cultural heritage analysis; 
i.e., using the fingerprint region of the IR 
spectrum (a region typically thought of as 
ranging from roughly 400 to 1,500 cm−1, a 
range not completely available yet in com-
mercial mid-IR scanners) enables mapping 
of a variety of pigments and binders, and 
comparison of the hyperspectral mid-IR 
data to point spectra obtained by a conven-
tional IR spectrometer in reflectance mode 
demonstrates the power of this new technique, which should 
expand as the accessible mid-IR range of the instrumenta-
tion increases.

Currently, powerful combinations of multispectral and 
hyperspectral imaging with other imaging and analytical 
modalities are revealing the rich information that can be 
gleaned from the synergy of combined methodologies (e.g., 
Raman spectroscopy, fiber optic reflectance spectroscopy) 
[7], [20]. While multi/hyperspectral data cubes contain 
rich material information, they are challenging to acquire 
and analyze due to the sheer size of these data sets. Tra-
ditionally, dimension reduction and feature exaction tech-
niques such as PCA and end-member analysis were used 
for hyperspectral data [18]. Recently, compressive sensing 
has been used in hyperspectral imaging for sensing, recon-
struction, and material classification [21]. The technique 
exploits the sparsity of signals by solving the following 
optimization problem:

 ,    ,min f g Afst.
f p 2 # e-  (1)

where e  controls the tolerate approximation due to noise, and 
p 0=  or 1 describe the sparsity of the signal as L0 norm (total 
number of nonzeros) or L1 norm (sum of absolute value).

The optimization framework from (1) can be used to 
decompose measured reflectance spectra into pure spectral 
components, with can be used to identify and “unmix” het-
erogeneous pigment combinations on painting surfaces [22]. 
In this approach, g is defined as the spectral vector ( )g m  at a 
given pixel, and each column of A is a spectral vector of known 
material from a predetermined dictionary of pigment spectra. 
Solving the optimization problem then reconstructs the sparse 
coefficient f , which tells us the material components of that 
pixel, along with their relative concentrations. Note that these 

spectral decomposition methods are entirely linear, and there-
fore cannot accurately model nonlinear effects such as wave-
length-dependent scattering, self-absorption, etc., which may 
be common in a real painting material.

We conclude this section by highlighting a recent com-
putational advance that leverages tremendous power from 
combined imaging modalities, i.e., advances in registration 
software that enable the “stacking” of images or especially the 
stacking of full data cubes from different regions of the elec-
tromagnetic spectrum [12].

The entire reason for manipulating data cubes from dif-
ferent regions of the electromagnetic spectrum—visualiza-

tion of different and often complementary 
data—brings with it a concomitant chal-
lenge: Is it possible to register images in 
which the features below the immediate 
surface have been moved, painted over, or 
scraped away? Artists often experimented 
with multiple underdrawings on the same 
painting and then overpainted those under-
drawings with further alterations in the 
paint layers. Revealing and spatially reg-

istering these pentimenti can provide significant insights to 
artistic process and intent.

One solution [12] has utilized image fusion methods in 
which the modulus of the wavelet transform is determined 
and allows for the identification of “candidate control points,” 
common features in the different images that can be used for 
alignment. The true functionality of the algorithm comes from 
how it assesses the statistical quality of these control points 
and seeks a wide enough spatial distribution of them so that 
a function may be calculated to register a variety of different 
sized images. Registration often requires a couple hours of 
computational time on a desktop PC. In the case of Figure 1, 
a rotated IR image has been registered with an X-radiograph 
followed by an adjustment of their relative intensities to clarify 
the legibility of the underlying portrait. This legibility enhanc-
es the confidence in assigning the underlying portrait to an art-
ist other than Vermeer. (Readers are encouraged to view the 
movies of registered images in the supplementary materials of 
Conover, et al. [12] at http://link.springer.com/article/10.1007/
s00339-015-9140-1.) This software is not only exceptionally 
powerful, but it is also readily implemented; one of the authors 
of this article routinely trains 18-year-old first-year college stu-
dents how to obtain multiple multispectral image cubes and to 
register them.

Three-dimensional shape scanning and recovery
Since the 1990s, 3-D laser scanning has made the shape cap-
ture of 3-D cultural-heritage objects possible. In one of the first 
efforts to capture sculpture in the round, the Digital Michelan-
gelo project, researchers scanned several Michelangelo statues, 
including his masterpiece David [6]. While the project pro-
duced spectacular geometries of statues meters in size at milli-
meter resolutions from a combination of three expensive laser 
scanners, the results still fails with in specular/shiny areas of 
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objects. Processing these data is also a nontrivial task since 
gaps in the scanned area must be filled and the different scans 
must be aligned and registered in X, Y, Z space. Also, further 
processing to map color information on the acquired 3-D 
meshes is needed to produce a fully ren-
dered result. The whole process was expen-
sive (US$2 million) and took 32 people 
years (1997–2004) to plan, scan, and model 
ten statues. Thus, laser scanning poses 
many challenges that limit its widespread 
use. Beside academy, Aicon3D (http://www.
aicon3d.com/) and Metis (http://metis-digi-
tal.com/) companies currently offer high-
resolution 3-D scanner for artworks, and 
Artmyn (http://www. artmyn.com) provides 
Web solution for 3-D imaging, using the 
one of the oldest New Testament papyri 
(Papyrus 66) as an example. Due to the lim-
itation of laser scanning, new methods are 
still needed for quick and cost-effective 
ways for digitally archiving art.

Another effective approach to the imag-
ing of extremely large structures has been airborne LiDAR 
remote sensing techniques, which make it possible to record 
shapes on the extreme landscape scale. For instance, the 200 
km2 area of the ancient Maya landscape at Caracol, Belize, 
was scanned with a resolution that could resolve structures of 
roughly 25-cm height [15]. The data obtained helped research-
ers understand that the ancient Maya could radically modify 
their landscape to create a sustainable urban environment. On 
the other hand, Google Earth (https://earth.google.com/) has 
made 3-D buildings of cities (e.g., Chicago, Illinois) and 3-D 
historical sites (e.g., Rome’s Colosseum) easily accessible to 
the public, though in low resolution.

To overcome some of the limitations of terrestrial and air-
borne laser scanning due to the high operational, researchers 

have more recently used a more convenient and purely image-
based method, SfM, a photogrammetry stereo technique, to 
recover the shape of historical sites. In 2006, the 3-D struc-
ture of the Colosseum in Rome was generated from a large 

collection of consumer photos taken at dif-
ferent viewpoints [16]. These photos were 
gathered from an Internet-sharing website. 
The photo explorer uses image-based ren-
dering techniques to create smooth transi-
tion between different viewpoints, so the 
user can comfortably and virtually tour 
historic locations. SfM may also be used 
to great effect on smaller moveable objects, 
however, the depth accuracy of the pho-
togrammetry stereo method is limited to 
only textured surfaces and fails on feature-
less surfaces, hence, the depth resolution is 
typically lower than the lateral resolution at 
each pixel.

Another image-based method, photo-
metric stereo, recovers the 3-D shape of an 
object by taking multiple images at fixed 

view but varies lighting positions. Photometric stereo models 
the image intensity as a function of surface normal, reflectance, 
and lighting/viewing angle. The surface normal is recovered 
by solving an optimization problem, and the 3-D surface of 
the object can be recovered by integrating the surface normal 
across the field of view. Unlike photogrammetry, photometric 
stereo works extremely well on textureless surfaces and can 
produce high-resolution normal maps. Classic photometric ste-
reo methods assume a point light source placed at infinitely far 
away from direction L, and assume the material is Lambertian 
with albedo reflectivity of k, so that the reflected light intensi-
ties at an object point with surface normal n becomes

 ( ) .I k n L:=  (2)

(a) (b) (c) (d)

Figure 1. (a) A color image of Johannes Vermeer’s Girl with the Red Hat (1665/1666). Andrew W. Mellon Collection, 1937.1.53, National Gallery of Art, 
Washington, D.C., (b) infrared reflectance (2,100-2,400 nm), (c) X-radiograph, and (d) summation of the rotated X-radiograph and the intensity-inverted 
and rotated infrared reflectance image. (Images and figure caption used with permission from [12].) 
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By taking a series of measurements I , with different, but 
known lighting direction L , the surface normal n, and 
albedo k  can be estimated from a system of linear equations 
using, for instance, a least squares method.

Classical photometric stereo assumes a distant-light model. 
This considerably simplifies the problem, as it produces con-
stant lighting angle and incident radiance across the object sur-
face. However, distant-light sources are impractical due to finite 
space and energy constraints. As a result, for a typical photo-
metric stereo capture setup, lighting angle and incident radiance 
vary across the object surface. Using the simplified far-light 
model from (2) with such a setup produces a 3-D shape with 
large global error [25]. Recently, research-
ers have explored the near-light photometric 
stereo method to recover millimeter to sub-
millimeter scale markings on the surfaces of 
Paul Gauguin’s paintings (Figure 2) [9]. The 
depth maps acquired achieve a depth preci-
sion of fewer than 100 mn  for a field of view 
as large as 300 mm. These depth maps have 
revealed new details of how Gauguin pro-
duced his paintings using his unique draw-
ing transfer techniques.

Classical photometric stereo also as-
sumes Lambertian surfaces with perfect diffuse reflection. 
However, this assumption is invalid for a large class of real 
materials such as metals, plastics, and glass, which exhibit 
different combinations of diffuse and specular reflections. 
The most accurate way to model how light is reflected from 
an opaque surface uses the bidirectional reflectance distribu-
tion function (BRDF), which is a four-dimensional function 

( , )fr i o~ ~ , which depends on the incoming light direction 
i~  and outgoing light direction o~ . The BRDF is the most 

general way to model surface reflection (not considering 
subsurface scattering), but it also severely complicates the 
photometric stereo problem. As a result, several researchers 
have investigated lower-dimensional reflectance models for 

use with photometric stereo algorithms. Ikehata et al. [23] 
models the non-Lambertian, specularities and shadows as 
additive corruption E, so that the observed image intensity 
is ( ) EI k n L:= + . Assuming the corruption E is spatially 
sparse, the problem can be solved by compressive sensing 
algorithms by modeling the optimization similar to the La-
grange form of (1) as:

  ( ) ,min I k n L EE
, ,k n E 2 0: m- - +  (3)

where m  is an nonnegative parameter controls the balance 
between data fit and sparsity.

While photometric stereo can produce 
submillimeter precision surface measure-
ments with a large field of view, other 
methods can be used to measure surface 
detail on the microscopic scale. Optical co -
herence tomography (OCT) has recently 
been employed for examining the layer 
structure of paintings [13]. High-resolu-
tion 3-D images at a micron scale can be 
reconstructed thus revealing the underlay-
ers of paintings and their corresponding 
depth positions. Originally proposed for 

biomedical imaging of structures such as the eye, OCT can 
produce high-resolution contrast depth maps. OCT presents 
challenges in that the instrumentation is expensive and can 
only scan centimeter-sized areas. The depth maps obtained 
are also not linked to material color information, so inter-
preting these data is not immediately intuitive.

Image relighting for cultural heritage
In addition to the 3-D geometry, characterizing surface 
appearance under different lighting conditions is also critical 
for cultural heritage. The appearance of an artwork is the 
sum result of how its material and microstructure interact 
with all possible incoming light rays and all the possible 

subsequent measured outgoing light 
rays that may have been reflected, 
absorbed, scattered, refracted, and 
transmitted from the artwork’s sur-
face. This compressive light-transport 
function combines each possible inci-
dent light location, wavelength, direc-
tion, polarization with how this 
incident electromagnetic radiation 
scatters underneath the object’s sur-
face, and global illumination effects 
such as self-shadowing and interreflec-
tion. It is an immense totality of mea-
surements that is only theoretically 
possible to collect completely. Conse-
quently, the light-transport function at 
a fixed viewpoint may be easier to 
gather by capturing images of artwork 
lit from various light directions. 

Reflective
Sphere

Calibration
Target
NativityColor

Checker

Figure 2. (a) The setup for capturing photometric stereo of Gauguin’s Nativity: a color checker for 
color calibration, a 3-D calibration target for 3-D surface calibration, a reflective sphere for calibrating 
light direction, and the work of art. (b) Several frames from an animation visualizing the 3-D surface 
shape at the location of the lines drawn in Nativity. The 3-D reconstruction shows clear evidence of 
protrusions on the page where ink has been deposited. This is solid evidence for the ink being trans-
ferred from a matrix such as that in a monotype transfer process. (Images and figure caption used 
with permission from [9].) 
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Reflectance transformation imaging (RTI), originated from 
polynomial  texture mapping (PTM), is one such approximation 
method. Malzbender [8] first discussed RTI as a method for 
examining an artwork using interactively changeable light-
ing conditions with a set of digital images. By interpolat-
ing multiple images of a work, each with different 
illumination angles from a fixed camera position, an “active 
photo” may be produced with easy controls that encourage 
exploration to see vanishing ly subtle features, including 
self-shadowing and inter  re flection. The PTM typically 
stores six coefficients [ , , , , , ]c c c c c c c0 1 2 3 4 5=  for each pixel, 
and computes the pixel intensity I from a novel illumination 
direction [ , , ]l l l lx y z

T=  as a biquadratic function:

 .I c l c l c l l c l c l cx y x y x y0
2

1
2

2 3 4 5= + + + + +  (4)

The RTI either uses polynomial basis of order six or higher 
(e.g., ( ) [ , ,h l l lx y

2 2_ , , , ]l l l l 1x y x y
T  above) or uses hemispheri-

cal harmonics (HSH) basis ( )h l  to generate a novel image 
from a new illumination direction l  interactively specified 
by a user. For both cases, the pixel intensity is universally 
given by ( )I h l cT= . While the basis ( )h l  is the same for all 
the image pixels, the coefficients c  are pixel dependent. The 
coefficients can be computed from a set of precaptured K  
images under different known lighting directions, by least 

squares of an overdetermined (assume c  has less order than 
K) linear system:
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 (5)

Over the past several years, the art conservation commu-
nity has adopted RTI for close digital examination of artworks 
through relighting. RTI provides visually compelling ways to 
interactively explore surface relief and discover subtle surface 
features otherwise missing or indiscernible in ordinary photos 
or by direct visual inspection [24]. The free viewer software 
from Cultural Heritage Imaging (CHI) has been a boon to the 
field since it can exaggerate surfaces, pixel-by-pixel, to depict 
the topography more clearly and to compute estimates of sur-
face normal vectors via photometric stereo or from the PTM 
interpolation equation itself.

However, these methods assume that lighting is infinite-
ly far away from the object, a condition that cannot be eas-
ily achieved in practice due to power limitations of the light 
source and limited space around the object. The obvious solu-
tion is to capture images using near lighting, but these con-
ditions result in nonuniform illumination artifacts made 

(a)

Desktop Size Dome 81 Captured
Images

One of the Captured Images : Cropped

One of the Captured Images : Cropped

(b) (d)

(c)

Figure 3. Relighting comparisons for a woodblock by Paul Gauguin (accession number 1940–91) housed at the Art Institute of Chicago. (a) The 
woodblock was inserted under a dome to capture (b) 81 images, each under different lighting. The light position used to compute light attenuation due 
to the distance squared fall-off. (c) The inverse of this attenuation was used to produce relit images with even illumination. (d) The corrected images look 
uniformly lit and more visually pleasing. (Images and figure caption used with permission from [25].)  
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worse as the distance between the light source and scene 
narrows. Not only does uneven illumination produce poor 
visualizations for relighting, but when these data are used for 
photometric stereo, systematic errors introduce curl to the sur-
face normal estimations and make quantitative surface recon-
structions difficult. An algorithm to correct for captures that 
violate far-light assumptions has recently become available 
[25] that creates uniformly lit images (Figure 3) and, more-
over, accurate photometric stereo calculations for estimation 
of surface normals.

Macro X-ray methods
All macro X-ray methods in cultural heritage stem from 
Roentgen’s discovery of X-rays in the late 19th century. 
X-radiography has been a staple of the field for decades and 
is still valuable in its original form: a 
contrast image formed from the absorp-
tion of X-rays by high-Z contrast ele-
ments, such as the lead associated with 
the pigment lead white. X-radiographs 
are routinely used by conservators and 
curators to characterize the method and 
style of painting and can be indicative of the artist’s 
thought process when pentimenti are observed. Within the 
last decade, major advances have been made in interpreting 
X-radiographs by computational methods. Also, there has 
been an increasing use of macro tomographic methods, as 
well as the development of macro XRF scanning and macro 
XRD scanning that have transformed our views of cultural 
heritage objects.

Computational processing of X-radiographs
Computational processing of X-radiographs has revolution-
ized the area of thread count and thread direction analysis for 
paintings on fabric supports [11] and now the chain lines are 
impressed into the paper by the wire mesh of the molds dur-
ing fabrication [26]. The development of the method in [11] 
hinged on realizing that a Fourier transform to the observed 
alternating light and dark X-ray contrast patterns of a canvas 
could provide both thread count and thread direction data. 
Prior to this insight, threads were painstakingly counted by 
hand under magnification, and those counts were limited to 
only a few centimeters of a painting.

These new computational methods permit global analysis 
of the entire work. The overall pattern of threads has been 
shown to be very diagnostic for matching paintings to a single 
bolt of fabric and is now being used to date paintings. Fur-
thermore, primary and secondary cusping in the canvas weave 
(scallop patterns caused by the stretching methods used to 
prepare canvases for old master paintings) becomes obvious 
after employing the computational algorithm, and not only can 
these patterns be used to match paintings to proximal regions 
of a bolt of cloth, their absence can be used to infer that a paint-
ing has been trimmed. More importantly, this method provides 
a way to match paintings at approximately the same period to 
a single bolt of cloth [11].

Macro XRF scanning
Some of the most exciting recent developments in cultural 
heritage analysis have involved XRF. The method involves 
using an X-ray source to ionize core electrons from atoms or 
ions. After the generation of inner-shell electron “holes,” 
higher energy electrons “fall” into those holes, leading to the 
fluorescence of an X-ray. Because electron energy levels are 
quantized, the fluoresced X-rays are characteristic of the ele-
ments involved. Because inner-shell electrons are involved in 
these processes, the technique gives only elemental rather 
than chemical information. Therefore, for better and for 
worse, the spectra are simplified by their lack of chemical 
information. X-rays of different energies are attenuated differ-
ent amounts when passing through a given material from 
emitter to detector. As a result, it is possible to make some 

statements regarding the depth of materials 
relative to one another in the layers of a 
painting, particularly when a model of that 
layered material can be computer simulat-
ed [27]. For example, the difference in 
intensity for an element’s spectral response 
compared to theory can indicate how close 

to the surface of the object that element is, given information 
from the spectrum about which elements might be on top of 
it. Highly portable, rugged XRF point analyzers have made it 
possible to do qualitative (and under favorable conditions, 
semiquantitative) elemental analysis nondestructively on cul-
tural heritage objects in a matter of minutes.

The true revolution in the field has resulted from taking 
XRF scanning methodologies and repurposing them with 
transportable macro XRF scanners [5], [28]. These scanners 
acquire a hyperspectral XRF data cube by scanning point by 
point in the x-y plane—each point in the x-y plane contains a 
full XRF spectrum. As with single point analysis, depth infor-
mation can often be inferred based on relative X-ray intensi-
ties. As one might imagine, the amount of data involved in 
these cubes has demanded computational methods that can 
handle and mine this wealth of information [29]. Sometimes 
scanning a painting on a canvas support from behind can 
provide a better data set, due to different X-ray absorption 
characteristics, than scanning a painting from the front. The 
resulting information about elemental composition can be 
used to infer pigment maps and inferred information about 
relative depth can be used in combination with those maps to 
reconstruct paintings underneath overpaint [28]. For an artist 
such as van Gogh, whose work sold so poorly during his life-
time that he frequently reused his canvases and was supported 
by his brother, this XRF scanning technique has opened vast 
new areas of research (Figure 4).

Macro XRD scanning
As with point XRF analysis, point powder XRD has histor-
ically been invaluable in the characterization of artists’ pig-
ments. When performed in situ, the method does not 
require a sample and is considered nondestructive. Because 
the diffraction of X-rays requires a regular repeating array 

Some of the most exciting 
recent developments in 
cultural heritage analysis 
have involved XrF. 
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of electron density, the method requires microcrystallinity 
in the analyte. Thus, the technique cannot be used on 
amorphous materials or materials that do not diffract 
X-rays well, and in this regard it is inferior to XRF. Howev-
er, because the diffraction pattern of a crystalline substance 
is essentially a fingerprint, it provides direct chemical 
information about the analyte, and in that regard it is supe-
rior to XRF. Because XRD typically requires greater pho-
ton f lux than XRF, the method was more resistant to 
migration from synchrotrons to transportable scanning 
methodology. Fortunately, those problems are being solved 
[5]. In addition to providing positive chemical identification 
of materials present, XRD also offers the advantage that, 
because it requires higher energy X-rays, it provides greater 
depth penetration. Combined with XRF macro scanning 
data cubes and hyperspectral imaging cubes from the UV, 
vis, and IR, these techniques, operating synergistically, 
allow unprecedented insights into the composition of cul-
tural heritage objects, with all of the attendant implications 
for art history and art conservation.

Conclusions
In this article, we surveyed how computational imaging has 
impacted five key areas of cultural heritage science. There are 
three key features that have resulted in these techniques mak-
ing a significant impact on the cultural heritage community. 
The first is the proliferation in recent years of image sensing 
technology, which has spawned technological advances in 
new imaging modalities such as XRF, XRD, hyperspectral, 
etc. The second feature is that recent advances in these new 
imaging modalities has given accessibility to entirely new 
types of information latent within the artworks held by muse-
ums. The third feature is the ability to visualize information 
about artifacts intuitively in the form of images, which has 
made this information much more accessible and comprehen-
sible to nonexperts.

Computational imaging of cultural heritage is opening up 
many new avenues for investigating the technical art history of 
objects and to assess the condition of works of art that will aid 
in their long-term preservation. There are several areas of com-
putational imaging that have not been thoroughly explored on 
cultural heritage objects. Also compressive sensing and sparse 
imaging could significantly improve sensitivities especially for 
conditions where low light is necessary for light-sensitive materi-
als and when increased imaging speeds are necessary for experi-
ments that cannot be conducted in the public spaces of museums 
over days (as in macro X-ray scanning). Improved material data-
bases with bidirectional reflectance distribution function data 
[30] could lead to advances in reconstruction algorithms that 
produce more accurate image archives and renderings. Scalabil-
ity is another principal obstacle. For example, a comprehensive 
measurement of the chemical composition and spatial structure 
of layers of paint in an entire work of art could provide new and 
valuable tools for art historians and conservators.

Another important direction that has not been covered in this 
article is the disse mination, visualization, and display of the 
great body of visual information now being captured by muse-
ums and galleries around the world. For instance, augmented 
reality is projected to strongly impact the museum visitor’s 
experience in coming decades. Finally, for the computational 
imaging field, it is important to note that artworks provide 
fantastic test scenes that can inspire researchers to push the 
envelope by providing new imaging and display techniques 
that can probe the complex light-material interactions inher-
ent in so many works of art. In this regard, it is the hope that 
cultural heritage can serve as a catalyst for novel research in 
computational imaging.

Authors
Xiang Huang (xianghuang@gmail.com) is a postdoctoral 
researcher in the Mathematics and Computer Science Division 
of Argonne National Laboratory. His interestes are solving 

(a) (b) (c) (d)
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