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ABSTRACT

In this paper, we study the problem of automatic identifi-
cation of pigments applied to paintings using hyperspectral
reflectance data. Here, we cast the problem of pigment iden-
tification in a novel way by decomposing the spectrum into
pure pigments. The pure pigment exemplars, chosen and
prepared in our laboratory based on historic sources and ar-
chaeological examples, closely resemble the materials used
to make ancient paintings. To validate our algorithm, we
created a set of mock-up paintings in our laboratory consist-
ing of a broad palette of mixtures of pure pigments. Our
results clearly demonstrate more accurate estimation of pig-
ment composition than purely distance-based methods such
as spectral angle mapping (SAM) and spectral correlation
mapping (SCM). In addition, we studied hyperspectral im-
agery acquired of a Roman-Egyptian portrait, excavated from
the site of Tebtunis in the Fayum region of Egypt, and dated
to about the 2nd century CE. Using ground truth information
obtained using Raman spectroscopy, we show qualitatively
that our method accurately detects pigment composition for
the specific pigments hematite and indigo.

1. INTRODUCTION

The primary aim of identifying the pigments used on artworks
is to characterize the palette of the artist, understand how
these materials may change over time, to better inform con-
servation treatment of this invaluable cultural heritage, and to
route out forgeries. More specifically, for the 2nd century AD
Roman Egyptian portraits comprising this study (currently
housed at the Phoebe A. Hearst Museum of Anthropology),
these data not only help us to better understand the painting
technology of this early period but also they are helping us to
better characterize the global exchange and trade economy of
the Roman era [1].

Reflectance spectroscopy and hyperspectral imaging are
analytical methods that are becoming increasingly important
for the documentation and characterizing works of art. Previ-
ous work in this area has employed a broad range of spectral
information which relates the physical mineralogy of the pig-
ment to its unique molecular spectral response. Hyperspec-
tral imaging is inherently non-destructive and non-invasive
and can be applied in-situ to recover reflectance curves on

a per pixel basis. Since each pigment has a characteristic re-
flectance response, these data can be interrogated using dic-
tionaries of known spectra. These spectral dictionaries may
either be physically modeled from the known molecular struc-
ture of the pigment mineralogy, learned directly from spectral
samples of an artwork (e.g. learning so-called “endmembers”
[2]), or they may be formed from previously collected spec-
tra of representative pigment samples [3]. In this paper, we
investigate the latter case, where ground truth measurements
of a spectral library are provided. In particular, we form an
over-complete dictionary that incorporates the inherent vari-
ability in the spectral response of a given pigment due to the
non-uniformity in chemical compositions, paint thicknesses,
pigment-binder ratios, sensor noise, and so on. We show
quantitatively that such an over-complete dictionary represen-
tation produces more accurate estimation of pigment compo-
sition than using a dictionary consisting of a small set of pure
endmembers alone.

Sparse modeling has been used in a diverse set of prob-
lems such as face recognition [4] and remote sensing [5].
In this paper, we cast pigment identification as an unmix-
ing problem and solve it using sparse modeling. To the best
of our knowledge, we are the first to apply sparse modeling
to the problem of pigment identification in paintings. We
build an over-complete dictionary from hyperspectral images
of a reference pigment library composed of color swatches
painted out on paper and canvas supports. These pigments
were selected on the basis of what we already know about Ro-
man painting from previous studies [6] and interrogating the
portraits themselves using multi-analytical approach [7]. We
then use our over-complete dictionary to decompose the mea-
sured test spectra of a pigment into a sparse coefficient vector
using the `1 minimization solver [8]. The values in the sparse
coefficient vector then directly correspond to abundances of
pure pigments in the dictionary. We show that this approach
produces quantitative performance advantages for estimating
the composition of mixed pigments, and does so without the
need for an explicit threshold selection strategy. To evalu-
ate the performance of our algorithm, we applied our method
to hyperspectral images captured from both our color swatch
library and the mummy portrait itself. We compare our re-
sults with commonly used spectral angle mapping (SAM) and
spectral correlation mapping (SCM) techniques and show that



our algorithm outperforms these methods. While we do not
have exhaustive ground truth data for the pigment composi-
tion of the Fayum portrait, we compare against the ground
truth pigment information of point samples measured using
Raman spectroscopy. We also quantitatively evaluate the per-
formance of our method using back-projection reconstruction
error. Our method shows a significant improvement in both
back-projection error and pigment decomposition relative to
previous approaches.

2. PREVIOUS WORKS

Hyperspectral and multispectral data have already been used
for pigment identification in previous studies such as [2], [3],
[9], and [10]. Many of them [2], [3], [9], [10] can be seen as
a method just based on nearest neighbor to classify pigments.
They compare the unknown spectrum to the spectra of some
reference spectra of pure pigments in a library. The whole
procedure can be summarized in three steps: (i) making a
spectral library (ii) defining a distance measure, (iii) assigning
a label to an unknown pigment.

To build the spectral library, an endmember detection al-
gorithm such as the pixel purity index algorithm [11] is usu-
ally used. These algorithms find the spectral signatures of
the painting as pure pigments. However, they have important
drawbacks. They usually need to know the number of end-
members beforehand [12]. Also, the obtained endmembers
sometimes do not have any physical meanings. Once the end-
members are identified, the next step is to compare against
the spectrum of a given pixel. A distance metric is used to as-
sign the unknown pigment to the closest endmember in the li-
brary. To assign the label, a threshold value should be defined
beforehand. For a given pixel, if the maximum similarity is
higher than the threshold, the pixel is labeled as a member
of the class with the smallest distance. Otherwise, the pixel
is assigned as unlabeled (unknown). Such approaches suf-
fer from some drawbacks. First, defining an appropriate dis-
tance function is not straightforward. Also, the value of the
threshold is another crucial parameter. It has been shown that
to detect different pigments in the hyperspectral paintings,
sometimes more than one threshold value should be defined
[10]. Lower threshold values are suitable for some pigments
and to detect other pigments higher threshold values are used.
Furthermore, the pixel is not labeled if its maximum spectral
similarity is lower than the threshold. These metrics can be
used for homogeneous areas and not highly mixed regions.
In real paintings, there are numerous mixed pixels which are
(non)linear combinations of two or more pigments.

In [10], a fully constrained spectral unmixing algorithm
combined with linear mixing model [13] is applied to find the
concentration of each endmember in each pixel. This work
assumes that pigment spectra can be decomposed into a linear
combination of endmembers from a known dictionary.

3. OUR APPROACH
3.1. Model Definition
We use sparse modeling to analyze pigment spectra. A sparse
vector is a vector with only few non-zero elements. The
sparse representation α of an unknown observation y ∈ RP

with respect to a dictionary D ∈ RP×N , is the result of the
constrained optimization problem:

Minimize ‖α‖0 such that y = Dα (1)

where the `0 pseudo-norm counts the number of non-zero el-
ement in α. The problem in Eq. (3) can be solved by either
involving greedy algorithms such as Matching Pursuit (MP)
or Orthogonal Matching Pursuit (OMP) or by using relaxation
techniques [14]. One such relaxation technique we adopt here
is to replace the `0 norm with the `1 norm defined by:

‖α‖1 =

N∑
i=1

|αi| (2)

where αi is the ith component of vector α. In our experi-
ments, we use the SUnSAL (a LASSO solver) that has shown
its efficiency for sparse unmixing for remote sensing [8]. It
solves the constrained optimization problem:
α̂ = argminα‖y −Dα‖22 + λ‖α‖1 such that α ≥ 0 (3)

where λ controls the importance of the regularization term.
In this paper, we represent the unknown observation, i.e.,

the spectrum of a pigment, from a painting by y. We estimate
the sparse representation α corresponding to it by making a
dictionary matrix D and solving a convex optimization prob-
lem. Given D and an unknown observation y, we identify the
constituent components of y. In making our library or dic-
tionary matrix D, all the possible colors are considered and
no further information about the number of pure pigments or
their spectra is required. We assume that the spectrum of each
pixel, i.e., observation, in the painting can be described as a
linear combination of the atoms of the dictionary. Since each
pixel in the real painting is composed of a small number of
pigments compared to the total number of pigments in the
composition as a whole, the obtained representation α should
be a sparse vector.

3.2. Sparse Representation for Pigment Identification
Let us assume we have P spectral samples for each pigment.
N sets of spectral samples are measured by capturing hyper-
spectral images of a library of pigments. We denote the num-
ber of pigments as K. From the measurements, we create
K sub-dictionaries Dk ∈ RP×nk , k = 1, · · · ,K. Each sub-
dictionary is formed as:

Dk = [dk,1, dk,2, · · · , dk,nk
] (4)

where dk,i is the i-th spectrum of the k-th color and nk is the
number of the training samples for class k. Also, we define
sub-coefficient vectors αk corresponding to the coefficients
of sub-dictionary Dk as:

αk = [αk,1, αk,2, · · · , αk,nk
] (5)



where αk,i is the corresponding coefficient of dk,i. The
full dictionary or library D is composed of all such sub-
dictionaries, according to:

D = [D1,D2, · · · ,DK ] ∈ RP×N (6)

The full coefficient vector α is composed of all such sub-
coefficient vectors, according to:

α = [α1,α2, · · · ,αK ] ∈ RP×N (7)

where N =
∑K

k=1 nk in Eq. (6) and (7).
Assuming a sample from a class can be estimated as a

sparse linear combination of the training samples from that
class, we can write

yk ≈ Dkαk = αk,1dk,1 + · · ·+ αk,nk
dk,nk

(8)

where yk is the observation or test sample from class k, αk,i

coefficients are defined as in Eq. (5) , and dk,i atoms are de-
fined as in Eq. (4). For any test sample, the non-zero compo-
nents of α correspond to the concentration of each pigments
present in the mixture.

3.3. Building the Pigment Dictionary
To form our dictionary D, we use a set of pure commercial
pigment exemplars, chosen and prepared as paint in our labo-
ratory based on historic sources and archaeological examples,
closely resembling the materials used to make ancient paint-
ings. We captured the hyperspectral response of these pure
exemplars and used these spectra to form a reference dictio-
nary allowing us to study pigment identification via sparse
regression. In addition, we used the samples from two on-
line dictionaries: FORS Library and USGS Digital Spectral
Library. To obtain a set of representative samples for each
class and make the size of the dictionary reasonable, we apply
the k-means clustering algorithm and use only the centroids
of each cluster as atoms to populate the dictionary. Our final
dictionary consists of N = 406 atoms and K = 23 unique
pigments.

3.4. Pre-processing
Our captured spectra consist of 240 bands with 2nm resolu-
tion from 383 to 893nm. We observe that the low wavelength
channels (20 bands) in the UV tend to be quite noisy, and are
omitted. To reduce the effects of noise in the remaining bands,
we average each four consecutive bands together, resulting in
P = 55 channels in the each atom. The last step before solv-
ing the optimization problem is to normalize the atoms in the
dictionary and test samples to have Euclidean norm equal to
one.

3.5. Evaluation Measures
To evaluate the performance of our algorithm, we define a
new coefficient vector, α′ ∈ RK with elements:

α′k =

nk∑
j=1

αk,j for k ∈ 1, · · · ,K (9)

where α′k is the kth components of vector α′, and αk,j is the

jth components of vector αk. The new coefficient vector α′ is
simply the sum of the coefficients for the atoms correspond-
ing to each pigment. Unfortunately, in our experiments we do
not have access to ground truth information on the concentra-
tion of pigments in the spectra we measured. Instead, we use
reconstruction error as a metric of evaluation.

4. EXPERIMENTS

To evaluate the performance of our algorithm, we organize
two sets of experiments. To compare our results with pre-
vious methods for pigment identification, we use SAM, SCM
and linear unmixing [13]. In this section, we refer to our algo-
rithm as the sparse unmixing method. In the linear unmixing
algorithm, we refer to the atoms of the dictionary as endmem-
bers.

4.1. Real Pigment Mixtures
In our first experiment, we use seven pure pigments: ”gyp-
sum, calcite, indigo, lead white, Egyptian blue, goethite and
hematite”. We create 17 mixtures of these pigments by mix-
ing two/three together and painting onto a color swatch. We
then capture a hyperspectral image of each color swatch and
use our sparse unmixing method to estimate the sparse coeffi-
cients for each measured spectral sample. In this experiment,
we have partial ground truth information in the form of the la-
bel of each pigment used in each mixture but we do not have
direct access to the true coefficient values (i.e. pigment con-
centration). Table 1 shows the composition of each mixture.
We compare the performance of the two unmixing algorithms
(sparse vs. linear) by reporting the average reconstruction er-
ror. Our algorithm produces less reconstruction error for each
of the 17 mixtures in our experiment, significantly less for a
number of samples.

We analyze the results of four algorithms (SAM, SCM,
linear and sparse unmixing) on mixture 6 which is composed
of two pure pigments: indigo and hematite. The average spec-
tra of seven pure pigments are shown in Fig. 1 (a). For ref-
erence, the average spectrum of the mixture with that of its
pure pigments, (indigo, hematite and mixture) are shown in
Fig. 1 (b). As it can be observed, the average spectrum of the
mixture is very similar to the average spectrum of the indigo
curve shown in the figure, indicating a greater concentration
of indigo than hematite. We calculate the spectral angle and
spectral correlation similarities of each pixel in the mixture
with the endmembers in the dictionary. We also apply the
linear and sparse unmixing algorithms to estimate the coeffi-
cients of each pixel of the mixture. To compare the results of
four algorithms, we take the average of the similarity coeffi-
cients of all pixels of the mixture for seven colors. In Fig. 1
(c), the numbers on the horizontal axis refer to the pigment
in our pure pigment list. The vertical axis shows the aver-
age similarity coefficient obtained by each algorithm for each
color. As it can be observed in the figure, with both unmixing
algorithms, the estimated coefficients for the first two colors
(gypsum and calcite) are very small (< 10−4). However, lin-
ear unmixing estimates goethite (color 6) to be greater than



(a) (b) (c)

Fig. 1: (a) Endmembers spectra, (b) Average spectra of indigo, hematite and the mixture, (c) Comparison of the estimated
similarity coefficient of four algorithms. Only our spectral unmixing algorithm correctly estimates that the sole pigments in the
mixture are hematite and indigo.

Table 1: Average reconstruction error For 17 mixtures (our
algorithm vs. linear unmixing)

Mixture Our Alg. Linear Unmix.
gypsum+lead white 0.010 0.011

calcite+goethite 0.045 0.081
calcite+hematite 0.038 0.096

calcite+lead white 0.056 0.125
indigo+lead white 0.053 0.112
indigo+hematite 0.013 3.226
indigo+goethite 0.010 0.011

hematite+lead white+goethite 0.045 0.081
Egyptian blue+lead white+goethite 0.038 0.096
Egyptian blue+hematite+goethite 0.056 0.125

Egyptian blue+hematite+lead white 0.053 0.112
hematite+goethite 0.013 3.226

hematite+Egyptian blue 0.010 0.011
hematite+lead white 0.045 0.081

Egyptian blue+lead white 0.038 0.096
goethite+lead white 0.056 0.125

goethite+Egyptian blue 0.053 0.112

indigo (color 3) and hematite (color 7). As discussed previ-
ously, SAM and SCM are not suitable to determine pigment
concentration in highly mixed regions. By studying the SAM
result in Fig. 1 (c), it is unclear how to choose the proper
threshold to identify the constituent pigments in the mixture.
The most similar pigments to the mixture pixels appear to be
goethite, hematite and gypsum. Using SCM, the most simi-
lar pigments are goethite, gypsum and lead white. Only our
spectral unmixing algorithm correctly estimates that the sole
pigments in the mixture are hematite and indigo.

In our second experiment, we applied our method to a
Roman-Egyptian portrait, excavated from the site of Tebtunis
in the Fayum region of Egypt. For this painting, ground truth
measurements of pigment composition at a small set of point

locations were measured using Raman spectroscopy. In Fig.
2 (a), the studied portrait is shown. The red arrows indicate
the pixels for which ground truth information has indicated
the presence of either hematite or indigo. As can be observed
in Fig. 2 (b), our method correctly estimates the presence of
indigo in the lozenge of the crown and clavus regions, which
is confirmed by our analysis via Raman. In Fig. 2 (c), we
observe that hematite is used more in the face region, which
is also confirmed by our ground truth measurements.

5. CONCLUSION AND FUTURE WORKS

In this paper, we introduced the first application of sparse un-
mixing to the problem of pigment identification. This method
addresses several limitation of previous methods applied to
the pigment identification problem. We showed that distance
based methods such as SAM and SCM do not work well in
scenarios with highly mixed regions and that our sparse un-
mixing algorithm can estimate the pigment composition more
accurately than a linear unmixing method.

As part of our future work, we will further study the mix-
ing model of the pigments to improve our modeling. We
will also investigate feature selection methods to choose more
meaningful representations of our pigment spectra. For real
data, we will explore super pixel representations to merge
spectrally similar neighboring pixels. This new representation
will reduce the number of test samples and also the effects of
noise and artifacts. We will also apply dictionary learning
based methods to build a richer reference spectra library.
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Fig. 2: (a) Studied Portrait (arrows point to locations where ground truth pigment composition is known), (b) Coefficient map of
indigo, (c) Coefficient map of hematite. Our sparse unmixing algorithm correctly estimates pigment composition in the select
areas where ground truth information is known.
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