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Spatial-Spectral Representation for X-Ray
Fluorescence Image Super-Resolution

Qiqin Dai, Emeline Pouyet, Oliver Cossairt, Marc Walton, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—X-Ray fluorescence (XRF) scanning of works of art
is becoming an increasing popular non-destructive analytical
method. The high quality XRF spectra is necessary to obtain
significant information on both major and minor elements used
for characterization and provenance analysis. However, there is
a trade-off between the spatial resolution of an XRF scan and
the Signal-to-Noise Ratio (SNR) of each pixel’s spectrum, due to
the limited scanning time. In this project, we propose an XRF
image super-resolution method to address this trade-off, thus
obtaining a high spatial resolution XRF scan with high SNR. We
fuse a low resolution XRF image and a conventional RGB high-
resolution image into a product of both high spatial and high
spectral resolution XRF image. There is no gauruntee of a one
to one mapping between XRF spectrum and RGB color since,
for instance, paintings with hidden layers cannot be detected
in visible but can in X-ray wavelengths. We separate the XRF
image into the visible and non-visible components. The spatial
resolution of the visible component is increased utilizing the
high-resolution RGB image while the spatial resolution of the
non-visible component is increased using a total variation super-
resolution method. Finally, the visible and non-visible components
are combined to obtain the final result.

Index Terms—X-Ray fluorescence, Super-resolution, spatial-
spectral.

I. INTRODUCTION

OVER the last few years, X-Ray fluorescence (XRF)
laboratory-based systems have evolved to lightweight

and portable instruments thanks to technological advancements
in both X-Ray generation and detection. Spatially resolved
elemental information can be provided by scanning the surface
of the sample with a focused or collimated X-ray beam of (sub)
millimeter dimensions and analyzing the emitted fluorescence
radiation, in a nondestructive in-situ fashion entitled Macro
X-Ray Fluoresence (MA-XRF). The new generations of XRF
spectrometers are used in the Cultural Heritage field to study
the technology of manufacture, provenance, authenticity, etc,
of works of art. Because of their fast non-invasive set up, we
are able to study of large, fragile and location inaccessible art
objects and archaeological collections. In particular, XRF has
been extensively used to investigate historical paintings, by
capturing the elemental distribution images of their complex
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layered structure. This method reveals the painting history
from the artist creation to restoration processes [1], [2].

As with other imaging techniques, high spatial resolution
and high Signal-to-Noise Ratio (SNR) are desirable for XRF
scanning systems. However, the acquisition time is usually
limited resulting in a compromise between dwell time, spatial
resolution, and desired image quality. In the case of scanning
large scale mappings, a choice may be made to reduce the
dwell time and increase the step size, resulting in low SNR
XRF spectra and low spatial resolution XRF images.
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Fig. 1. (a) XRF map showing the distribution of Cr Ka on a section of the
”Bedroom”, by Vincent Van Gogh, The Art Institute of Chicago, and (b) the
automatic registration of 10 maps layered on top of the original resolution
RGB image.

An example of an XRF scan is shown in Figure 1 (a).
Channel 636 corresponding to Cr Ka elemental X-Ray lines
was extracted from a scan of Vincent Van Gogh’s “Bedroom”
painted in 1889 (housed at The Art Institute of Chicago, acc #
1926.417). The image is color coded for better visibility. This
is an image out of 4096 channels that were simultaneously
acquired by a Bruker M6 scanning energy dispersive XRF
instrument. The image has a low resolution (LR) of 96 × 85
pixels, yet still took 1−2 hour to acquire it. Given the fact that
the paining has dimensions 73.6 × 92.3 cm, at least 10 such
patches are needed to capture the whole painting. Much higher
resolution would be desirable for didactic purposes to show
curators, conservators, and the general public. This makes the
acquisition process highly impractical and therefore impedes
the use of XRF scanning instruments as high resolution
widefield imaging devices. In Figure 1 (b) we also show an
automatic registration of all 10 averaged XRF maps (across
all channels) layered on top of the original RGB image.

In this paper, we propose a super-resolution (SR) approach
to obtain high resolution (HR) XRF images, with the aid of
a conventional HR RGB image, as shown in Fig. 2. Our
proposed XRF image SR algorithm can also be applied to
spectral images obtained by any other raster scanning meth-
ods, such as Scanning Electron Microscope (SEM), Energy
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Fig. 2. XRF images have high spectral resolution but low spatial resolution,
whereas the opposite is true for conventional RGB images. The LR XRF
image and the HR RGB image are fused to obtain an HR XRF image.

Dispersive Spectroscopy (EDS) and Wavelength Dispersive
Spectroscopy (WDS). We model the spectrum of each pixel
using a linear mixing model [3], [4]. Since there is no direct
one-to-one mapping between the visible RGB spectrum and
the XRF spectrum, because the hidden part of the paining
is not visible in the conventional RGB image, but it can be
captured in the XRF image [5], we model the XRF signal as a
combination of the visible signal (on the surface) and the non-
visible signal (hidden under surface), as shown in Fig. 3. For
super-resolving the visible XRF signal we follow a similar
approach to previous research in [6]–[12]. A coupled XRF-
RGB dictionary is learned to explore the correlation between
XRF and RGB signals. The RGB dictionary is applied to
obtain the sparse representation of the HR RGB input image,
resulting in an HR coefficient map. Then the XRF dictionary
is applied on the HR coefficient map to reconstruct the HR
XRF image. For the non-visible part, we increase its spatial
resolution using a standard total variation regularizer [13],
[14]. Finally, the HR visible and the HR non-visible XRF
signals are combined to obtain the final HR XRF result. We
do not explicitly separate the input LR XRF image into visible
and non-visible parts in advance. Instead, we formulate the
whole SR problem as an optimization problem. By alterna-
tively optimizing over the coupled XRF-RGB dictionary and
the visible / non-visible HR coefficient maps, the fidelity of the
estimated HR output to both the LR XRF and HR RGB input
signals is improved, thus resulting in a better SR output. Both
synthetic and real experiments show the effectiveness of our
proposed method, in terms of reconstruction error and visual
sharpness of the SR result, compared to other methods, such as
bicubic interpolation, the total variation only SR method [13],
[14] and hyperspectral image SR methods [7]–[9].

The paper is organized as follows. Section II reviews the
literature related to the proposed approach. We formulate the
XRF image SR problem in Section III, while the proposed
method is described in Section IV. In Section V, we provide
the experimental results with both synthetic data and real data
to evaluate the approach. The paper is concluded in Section VI.

Output HR XRF Image
Visible Component
Yv (W × H × B)

Output HR XRF Image
Non-Visible Component
Ynv (W × H × B)

Input XRF Image
Non-Visible Component
Xnv (w × h × B)

Output HR XRF Image
Y (W × H × B)

+ =

Input XRF Image
Visible Component
Xv (w × h × B)

Input RGB Image
I(W × H × b)

Input XRF Image
X (w × h × B)

Fig. 3. Proposed pipeline of spatial-spectral representation for X-ray fluores-
cence image super-resolution. The visible component of input XRF image is
fused with the input RGB image to obtain the visible component of HR XRF
image. The non-visible component of the input XRF image is super-resolved
to obtain the non-visible component of HR XRF image. The HR visible and
non-visible component of output XRF image are combined to obtain the final
output.

II. RELATED WORK

While there is a large boby of work on SR for either con-
ventional RGB images [15]–[19] or hyperspectral images [6]–
[12], little work has been done for SR on XRF images. XRF
SR poses a particular challenge because the acquired spectrum
signal usually has low SNR. In addition, correlations among
spectral channels need to be preserved for the interpolated
pixels. Finally, the large number of channels (4096 channels in
Fig. 1) leads to a computation challenge, since super-resolving
each channel slice by slice is computational expensive.

The low spatial resolution limitations of hyperspectral im-
ages have led researchers in image processing and remote
sensing to attempt to fuse them with conventional high spatial
resolution RGB images. This image fusion [20] style SR can
be seen as a generalization of pan-sharpening [21], [22], which
enhances an LR color image by fusing it with a single-channel
black-and-white (“panchromatic”) image of higher resolution.
Recently, matrix factorization has played an important role
in enhancing the spatial resolution of hyperspectral imaging
systems [6]–[9]. In [6], a sparse matrix factorization technique
was proposed to decompose the LR hyperspectral image into
a dictionary of basis vector and a set of sparse coefficients.
The HR hyperspectral image was then reconstructed using
the learned basis and sparse coefficients computed from the
HR RGB image. The SR performance is improved by impos-
ing spatio-spectral sparsity [7], physical constraints [8] and
structural prior [9]. Bayesian approaches [10], [11] impose
additional priors on the distribution of the image intensities
and apply MAP inference. Non-parametric Bayesian dictio-
nary learning is applied in [12] to obtain a spectral basis, and
then obtain the HR image with Bayesian sparse coding.

In all these hyperspectral image SR methods [6]–[12], be-
cause the RGB spectrum is contained within the hyperspectral
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spectrum, the transformation from the hyperspectral signal
to the RGB signal is linear and known. However, in XRF
imaging, because the RGB spectrum (400 nm - 700 nm)
is outside the XRF spectrum (0.03 nm - 6 nm, i.e., 0.2
KeV - 40 KeV), there is no direct transformation from the
XRF signal to the RGB signal. Also the hidden part of the
scanning object will be captured in the XRF image [5], while
absent in the RGB image. According to our knowledge, no
work has been done on XRF image SR, by modeling the
input LR image as a combination of the visible and non-
visible components, and increasing the spatial resolution of the
visible component and non-visible component by fusing an HR
conventional RGB image with implicit spectral transformation
and using a standard total variation SR method, respectively.
The physically grounded unmixing constraints in [8] on end-
members and abundances are extended in this paper to model
the implicit transformation between the XRF spectrum and the
RGB spectrum, as well as the visible / non-visible separation.

III. PROBLEM FORMULATION

As shown in Fig. 3, we are seeking the estimation of an
HR XRF image Ȳ ∈ RW×H×B that has both high spatial and
high spectral resolution, with W , H and B the image width,
image height and number of spectral bands, respectively. We
have two inputs: an LR XRF image X̄ ∈ Rw×h×B with
lower spatial resolution w × h, w � W and h � H; and a
conventional HR RGB image Ī ∈ RW×H×b with high spatial
resolution, but a small number of spectral bands, b � B.
The input LR XRF image X̄ can be separated into two parts:
the visible component X̄v ∈ Rw×h×B and the non-visible
component X̄nv ∈ Rw×h×B . We propose to estimate the HR
visible component Ȳv ∈ RW×H×B by fusing the conventional
HR RGB input image Ī with the visible component of the
input LR XRF image X̄v and estimate the HR non-visible
component Ȳnv ∈ RW×H×B by using standard total variation
SR methods.

To simplify notation, the images cubes are written as
matrices, i.e. all pixels of an image are concatenated, such
that every column of the matrix corresponds to the spectral
response at a given pixel, and every row corresponds to the
lexicographically ordered image in a specific spectral band.
Accordingly, the image cubes are written as Y ∈ RB×Nh ,
X ∈ RB×Nl , I ∈ Rb×Nh , Xv ∈ RB×Nl , Xnv ∈ RB×Nl ,
Yv ∈ RB×Nh and Ynv ∈ RB×Nh , where Nh = W × H and
Nl = w × h. We therefore have

X = Xv +Xnv, (1)

Y = Yv + Ynv, (2)

according to the visible / non-visible component separation
model as shown in Fig. 3.

Let us denote by yv ∈ RB and ynv ∈ RB the one-
dimensional spectra at a given spatial location of Ȳv and Ȳnv ,
that is, representing a column of Yv and Ynv , according to the
linear mixing model [23], [24], they can be described as

yv =

M∑
j=1

dxrfv,j αv,j , Yv = Dxrf
v Av, (3)

ynv =

M∑
j=1

dxrfnv,jαnv,j , Ynv = Dxrf
nv Anv, (4)

where dxrfv,j and dxrfnv,j represent respectively the endmem-
bers for the visible and non-visible components, then
Dxrf

v ≡ [dxrfv 1 , d
xrf
v 2 , . . . , d

xrf
v M ] ∈ RB×M , Dxrf

nv ≡
[dxrfnv 1, d

xrf
nv 2, . . . , d

xrf
nv M ] ∈ RB×M . αv,j and αnv,j are the

corresponding per-pixel abundances. Equation 3 holds for a
specific column yv of matrix Yv (say the kth column). We take
the corresponding αv,j,j=1,...,M and stack them into a M × 1
column vector, this vector then becomes the kth column of the
matrix Av ∈ RM×Nh . In a similar manner we construct matrix
Anv ∈ RM×Nh . The endmembers Dxrf

v and Dxrf
nv act as a ba-

sis dictionary to represent Yv and Ynv in a lower-dimensional
space RM and rank{Yv} ≤M, rank{Ynv} ≤M .

The visible and non-visible components of the input LR
XRF image Xv and Xnv , respectively, are a spatially down-
sampled version of Yv and Ynv , respectively, that is

Xv = YvS = Dxrf
v AvS, (5)

Xnv = YnvS = Dxrf
nv AnvS, (6)

where S ∈ RNh×Nl is the downsampling operator that
describes the spatial degradation from HR to LR.

Similarly, the HR conventional RGB image I can be de-
scribed by the linear mixing model [23], [24],

I = DrgbAv, (7)

where Drgb ∈ Rb×M is the RGB dictionary. Notice that the
same abundances matrix Av is used in Equations 3 and 5.
This is because the visible component of the scanning object is
captured by both the XRF and the conventional RGB images.
The matrix Av encompasses the spectral correlation between
the visible component of the XRF and the conventional RGB
images.

The physically grounded constraints in [8] are shown to
be effective, so we propose to impose similar constraints,
by making full use of the fact that the XRF endmembers
are XRF spectra of individual materials, and the abundances
are proportions of those endmembers. Consequently, they are
subject to the following constraints:

0 ≤ Dxrf
v,ij ≤ 1,∀i, j (8a)

0 ≤ Dxrf
nv,ij ≤ 1,∀i, j (8b)

0 ≤ Drgb
ij ≤ 1,∀i, j (8c)

Av,ij ≥ 0,∀i, j (8d)
Anv,ij ≥ 0,∀i, j (8e)

1T(Av +Anv) = 1T, (8f)
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where Dxrf
v,ij , Dxrf

nv,ij , Drgb
ij , Av,ij and Anv,ij are the (i, j)

elements of matrices Dxrf
v , Dxrf

nv , Drgb, Av and Anv , respec-
tively, 1T demotes a row vector of 1’s compatible with the di-
mensions of Av and Anv . Equations 8a, 8b and 8c enforce the
non-negative, bounded spectrum constraints on endmembers,
Equations 8d and 8e, enforce the non-negative constraints on
abundances, and Equation 8e enforces the visible component
abundances and non-visible component abundances for every
pixel to sum up to one.

IV. PROPOSED SOLUTION

In order to solve the XRF image SR problem, we need
to estimate Av , Anv , Drgb, Dxrf

v and Dxrf
nv simultaneously.

Utilizing Equations 1, 5, 6, 7 and 8, we can form the following
constrained least-squares problem:

min
Av,Anv,D

rgb,

Dxrf
v ,Dxrf

nv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2F

+ ‖I −DrgbAv‖2F + λ‖∇(Dxrf
nv Anv)‖2F

(9a)

s.t. 0 ≤ Dxrf
v ij ≤ 1,∀i, j (9b)

0 ≤ Dxrf
nv ij ≤ 1,∀i, j (9c)

0 ≤ Drgb
ij ≤ 1,∀i, j (9d)

Av ij ≥ 0,∀i, j (9e)
Anv ij ≥ 0,∀i, j (9f)

1T(Av +Anv) = 1T, (9g)
‖Av +Anv‖0 ≤ s, (9h)

with ‖·‖F denoting the Frobenius norm, and ‖·‖0 the `0 norm,
i.e., the number of non-zero elements of the given matrix. The
first term in Equation 9a represents a measure of the fidelity
of the observed XRF data X , the second term the fidelity to
the observed RGB image I and the third term in Equation 9a
is the total variation (TV) regularizer. It is defined as

‖∇(Dxrf
nv Anv)‖2F

=

H−1∑
i=1

W−1∑
j=1

‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i+ 1, j, :)‖22

+‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i, j + 1, :)‖22
= ‖Dxrf

nv AnvG‖2F
(10)

where Ānv ∈ RW×H×M is the 3D volume version of Anv and
Ānv(i, j, :) ∈ RM is the non-visible component abundance of
pixel (i, j). G ∈ RNh×((W−1)(H−1)) is the horizontal/vertical
first order difference operator. To estimate the HR visible
component abundance Av , the HR RGB image I can pro-
vide spatial details. However, to estimate the HR non-visible
component abundance Anv , there is no additional spatial
information, so we need the TV regularizer (Equation 10) to
impose spatial smoothness on the non-visible component. The
TV regularizer parameter λ controls the spatial smoothness of
the reconstructed non-visible component, Ynv = Dxrf

nv Anv .
The constraint Equations 9e, 9f, 9g together restrict the

abundances of visible and non-visible components, and also
act as a sparsity prior on the per-pixel abundances, since they

bound the `1 norm of the combined abundances (Av + Anv)
to be 1 for all pixels. The last constraint Equation 9h is an
optional constraint, which further enforces the sparsity of the
combined abundance (Av +Anv).

The optimization in Equation 9 is non-convex and difficult
to solve if we optimize over all the parameters Av , Anv , Drgb,
Dxrf

v and Dxrf
nv directly. We found it effective to alternatively

optimize over these parameters. Also because Equation 9
is highly non-convex, good initialization is needed to start
the local optimization. A similar approach as the coupled
dictionary learning technique in [25], [26] is applied here to
initialize these parameters.

A. Initialization

Let I l ∈ Rb×Nl and Al
v ∈ RM×Nl be the spatially

downsampled RGB image I and visible component abundance
Av , we have

I l = IS, (11)

Al
v = AvS. (12)

Then the coupled dictionary learning technique in [25], [26]
can be utilized to initialize Drgb and Dxrf

v by

min
Drgb,Dxrf

v

‖I l −DrgbAl
v‖2F + ‖X −Dxrf

v Al
v‖2F

+β

Nl∑
k=1

‖Al
v(:, k)‖1,

s.t. ‖Drgb(:, k)‖2 ≤ 1,∀k,
‖Dxrf

v (:, k)‖2 ≤ 1,∀k,

(13)

where ‖ · ‖1 is the `1 vector norm, parameter β control the
sparseness of the coefficients in Al

v A
l
v(:, k), Drgb(:, k) and

Dxrf
v (:, k) denote the kth column of matrix Al

v , Drgb, and
Dxrf

v , respectively. Details of the optimization can be found
in [25], [26]. Drgb and Dxrf

v are initialized using Equation 13
and Dxrf

nv is initialized to be equal to Dxrf
v . Av is initialized

by upsampling Al
v computed in Equation 13, while Anv is set

to be zero at initialization.

B. Optimization Scheme

We propose to alternatively optimize over all the parameters
in Equation 9a. First we optimize over Av and Anv by fixing
all other parameters,

min
Av,Anv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2F
+‖I −DrgbAv‖2F + λ‖∇(Dxrf

nv Anv)‖2F
s.t. Av ij ≥ 0,∀i, j

Anv ij ≥ 0,∀i, j
1T(Av +Anv) = 1T,
‖Av +Anv‖0 ≤ s.

(14)

PALM (proximal alternating linearized minimization) al-
gorithm [27] is utilized to optimize over Av and Anv by
a projected gradient descent method. For Equation 14, the
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following three steps are iterated for q = 1, 2, . . . until
convergence:

V q
v = Aq−1

v − 1

dv
DrgbT (DrgbAq−1

v − I) (15a)

V q
nv = Aq−1

nv

− 1

dnv
(Dxrf

nv

T
(Dxrf

nv A
q−1
nv S − (X −Dxrf

v Aq−1
v S))ST

+ λDxrf
nv

T
Dxrf

nv AnvGG
T )

(15b)
{Aq

v, A
q
nv} = proxAv,Anv (V q

v , V
q
nv), (15c)

where d1 = γ1‖DrgbDrgbT ‖F , d2 = γ2‖Dxrf
nv D

xrf
nv

T ‖F are
non-zero step size constants, and proxAv,Anv

is the proximal
operator that project V q

v , V
q
nv onto the constraints of Equa-

tion 14. The proximal projection is computational inexpensive
because it just sets negative entries of V q

v and V q
nv to zero

and scales every column of V q
v and V q

nv simultaneously to
equal one in `1 norm. Notice that in Equation 15a, only the
gradient of the second term in Equation 14 is utilized to update
V q
v , because we want the visible component coefficients Av

to be determined by the RGB image I only, instead of being
determined jointly by the RGB image I and the XRF image
X .

Second, we optimize over Drgb solving the following con-
strained least-squares problem:

min
Drgb

‖I −DrgbAv‖2F
s.t. 0 ≤ Drgb

ij ≤ 1,∀i, j.
(16)

Likewise, Equation 16 is minimized by iterating the follow-
ing steps until convergence:

Eq = Drgbq−1 − 1

drgb
(Drgbq−1

Av − I)Av
T (17a)

Drgbq = proxDrgb(Eq), (17b)

with drgb = γ3‖AvAv
T ‖F again a non-zero step size constant

and proxDrgb the proximal operator that projects Eq onto the
constraint of Equation 16. The proximal operator this time
is also computationally inexpensive since it just truncates the
entries of Eq to 0 from below and to 1 from above.

Similarly, Dxrf
v is then optimized by solving

min
Dxrf

v

‖(X −Dxrf
nv AnvS)−Dxrf

v AvS‖2F

s.t. 0 ≤ Dxrf
v ij ≤ 1,∀i, j,

(18)

using the following iteration steps:

Uq = Dxrf
v

q−1

− 1

dxrfv

(Dxrf
v

q−1
AvS − (X −Dxrf

nv AnvS))STAv
T

(19a)

Dxrf
v

q
= proxDxrf

v
(Uq), (19b)

where dxrfv = γ4‖AvAv
T ‖F is the non-zero step size constant

and proxDxrf
v

is the proximal operator which project Uq onto

the constraints of Equation 18. It is the same as the proximal
operator in Equation 17b.

Finally, we optimize Dxrf
nv by solving the following prob-

lem,

min
Dxrf

nv

‖(X −Dxrf
v AvS)−Dxrf

nv AnvS‖2F
+λ‖∇(Dxrf

nv Anv)‖2F
s.t. 0 ≤ Dxrf

nv ij ≤ 1,∀i, j.
(20)

Likewise, the following two steps are iterated until conver-
gence:

Lq = Dxrf
nv

q−1

− 1

dxrfnv

(Dxrf
nv

q−1
AnvS − (X −Dxrf

v AvS))STAnv
T

− λDxrf
nv AnvGG

TAnv
T

(21a)

Dxrf
nv

q
= proxDxrf

nv
(Lq), (21b)

where dxrfnv = γ5‖AnvAnv
T ‖F again is a non-zero step size

constant, proxDxrf
nv

is the proximal operator projecting Lq onto
the constraints of Equation 20, which is the same proximal
operator as the ones in Equations 17b and 19b. The complete
optimization scheme is illustrated in Algorithm 1. According
to Equations 2, 3, 4, the HR XRF output image Y can be
computed by

Y = Yv + Ynv = Dxrf
v Av +Dxrf

nv Anv. (22)

Algorithm 1. Proposed Optimization Scheme of Equation 9

input: LR XRF image X , HR conventional RGB image I .
1: Initialize Drgb(0), Dxrf

v
(0) and Al

v
(0) by Equation (13);

Initialize Dxrf
nv

(0)
= Dxrf

v
(0);

Initialize Av
(0) by upsampling Al

v
(0);

Initialize Anv
(0) = 0;

n = 0;
2: repeat
3: Estimate Av

(n+1) and Anv
(n+1) with Equation 15;

4: Estimate Drgb(n+1) with Equation 17;
5: Estimate Dxrf

v
(n+1) with Equation 19;

6: Estimate Dxrf
nv

(n+1) with Equation 21;
7: n=n+1;
8: until convergence
output: HR XRF image

Y = Dxrf
v Av +Dxrf

nv Anv .

V. EXPERIMENTAL RESULTS

To verify the performance of our proposed SR method,
we have performed extensive experiments on both synthetic
and real XRF images. The basic parameters of the proposed
SR method are set as follows: the number of atoms in the
dictionaries Drgb, Dxrf

nv and Dxrf
v is M = 50 for synthetic

experiments and M = 200 for real experiments; γ1 = γ2 =
γ3 = γ4 = γ5 = 1.01, which only affects the speed of
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convergence; parameter β in Equation 13 is set to 0.02 and λ in
Equation 9 is set to 0.1. The optional constraint in Equation 9h
is not applied here.

A. Error Metrics

As a primary error metric we use, the root mean squared
error (RMSE) between the estimated HR XRF image Y and
the ground truth image Y gt is computed

RMSE =

√
‖Y − Y gt‖2F

BNh
. (23)

The peak-signal-to-noise ratio (PSNR) is reported as well,

PSNR = 20 log10

max(Y gt)

RMSE
, (24)

where max(Y gt) denoting the maximum entry of Y gt.
The spectral angle mapper (SAM, [28]) in degrees is also

utilized, which is defined as the angle in RB between an
estimated pixel and the ground truth pixel, averaged over the
whole image,

SAM =
1

Nh

Nh∑
j=1

arccos
Y (:, j)

T
Y gt(:, j)

‖Y (:, j)‖2‖Y gt(:, j)‖2
. (25)

B. Comparison Methods

In order to compare over results with the hyperspectral
image SR method GSOMP [7], CSUSR [8] and NSSR [9], the
linear degradation matrix P mapping the XRF spectrum to its
corresponding RGB representation needs to be estimated first.
Since these methods do not estimate this linear transformation,

I l = PX, (26)

where I l ∈ Rb×Nl is defined in Equation 11 and X ∈ RB×Nl

is the input LR XRF image. Although this linear transforma-
tion model does not hold for XRF and its corresponding RGB
images, we are trying to find the best approximation P so
that we can apply the mentioned above hyperspectral image
SR methods. The best approximation P can be computed by
the following least-squares problem

min
P

‖PX − I l‖2F . (27)

The Trust-Region-Reflective Least Squares algorithm [29] can
be utilized to estimate P .

Besides the above mentioned hyperspectral image SR meth-
ods, we also propose two baseline methods to compare against,
since SR for XRF images is still an open problem. Baseline
method #1 only uses LR XRF image as input, increasing its
spatial resolution by the same TV regularizer as in Equation 9,
by solving

min
A,Dxrf

‖X −DxrfAS‖2F + λ‖∇(DxrfA)‖2F (28a)

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j (28b)

Aij ≥ 0,∀i, j (28c)

1TA = 1T, (28d)
‖A‖0 ≤ s, (28e)

which is a special case of the proposed optimization problem
in Equation 9. A detailed optimization scheme can be found
in Appendix A. After solving for Dxrf and A, the HR output
XRF image Y can be reconstructed by

Y = DxrfA. (29)

Baseline method #2 does not model the input LR XRF
image as a combination of visible and non-visible components,
and increases its spatial resolution with a conventional HR
RGB image, by solving

min
A,Dxrf ,Drgb

‖I −DrgbA‖2F + ‖X −DxrfAS‖2F (30a)

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j (30b)

0 ≤ Drgb
ij ≤ 1,∀i, j (30c)

Aij ≥ 0,∀i, j (30d)

1TA = 1T, (30e)
‖A‖0 ≤ s, (30f)

which is also a special case of the proposed optimization
problem in Equation 9. Detailed optimization scheme can be
found in Appendix B. After solving for Drgb, Dxrf and A, the
HR output XRF image Y can be reconstructed by Equation 29.

C. Synthetic Experiments
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Fig. 4. Three noise free spectra used to synthesize the HR XRF image.
Spectra # 2 and # 3 are shifted vertically (by 0.01 and 0.02, respectively) for
visualization purposes.

We compare the SR results for different methods with a
synthetic experiment first. We combined 3 noise free spectra
(1024 × 1), an HR airforce target image (345 × 490 × 3) as
the visible image and a rectangle image (345 × 490 × 3) as
the non-visible image to simulate the ground truth HR XRF
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image Y gt (345× 490× 1024). The 3 noise free spectra, HR
airforce target image and the rectangle image are shown in
Figs. 4, 5 (a) and 5 (b), respectively. In detail, we assume that
the yellow foreground of the airforce target image corresponds
to spectrum # 1, the blue background of the airforce image
corresponds to spectrum #2 and the white foreground of the
rectangle image corresponds to spectrum #3. The LR XRF
image X (69 × 98 × 1024) was obtained by spatially down-
sampling Y gt by a factor of 5 in each dimension and adding
Gaussian noise to it with SNR 35dB.

(a) (b)

Fig. 5. (a) The airforce image is utilized as the visible component. (b) The
rectangle image is utilized as the non-visible component.

The RMSE, PSNR and SAM metrics were computed be-
tween the SR results of different methods described in Sec-
tion V-B and the HR ground truth Y gt. The default parameters
of methods GSOMP [7], CSUSR [8] and NSSR [9] in their
original paper were applied in our synthetic experiments. Opti-
mal parameter λ of Baseline #1 method (Equation 28) and the
proposed method (Equation 9) was found experimentally. To
make fair comparisons, the number of atoms in the dictionary
is set to be 50 for all methods (GSOMP [7], CSUSR [8],
NSSR [9], Baseline # 2 and the proposed method) that utilize
dictionaries. As shown in Table I, our proposed method has
the smallest RMSE, highest PSNR and smallest SAM. By
comparing Baseline #1 method with the proposed method, the
benefit of utilizing an HR RGB image can be validated. By
comparing Baseline #2 method with the proposed method, it
can be seen that a better and more realistic model that assumes
the XRF signal is a combination of visible component and
non-visible component is beneficial to obtain better SR results.
The traditional hyperspectral image SR methods (GSOMP [7],
CSUSR [8] and NSSR [9]) rely on an accurate linear degra-
dation model from hyperspectral to RGB signals. When the
degradation model is not accurate, their performance is inferior
to our proposed method. Baseline #2 can be considered an
extension of CSUSR [8], in that we learn the coupled RGB
and XRF dictionaries simultaneously and we do not utilize the
linear degradation model, which is a more flexible approach
and produces better SR performance.

Fig. 6 shows the average PSNR curves as a function of the
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Fig. 6. The average PSNR curves as a function of the channels of the spectral
bands for the SR method.

channels of the spectral bands for the test methods. It can
be seen that the hyperspectral SR methods GSOMP [7] and
NSSR [9] produce inferior SNR over all spectral channels.
All other methods perform well for spectral bands outside
the range [100 400] and our proposed method constantly
outperforms all other methods. For spectral bands in the
range [100 400], both methods’ performance decreases because
of the overlapping spectra, as shown in Fig. 4. Notice that
Baseline #1 slightly outperforms the proposed method around
channel #200, which is because there is a peak for both the
non-visible (Spectrum #3 in Fig. 4) and visible component
spectrum (Spectrum #1 in Fig. 4) around channel #200. The
proposed method makes errors in separating these two peaks,
resulting in worse performance than Baseline #1 which avoids
explicit visible/non-visible decomposition.

We compare the visual quality of different SR methods
on the region of interest of channel # 210 - 230 in Fig. 7.
Because GSOMP, CSUR, and NSSR hyperspectral image
SR methods [7]–[9] rely on an accurate linear degradation
model from hyperspectral to RGB signals, SR results are poor.
Baseline method #1 did not utilize the HR RGB image in SR
and so failed to reconstruct fine details. Baseline method #2
assumes one-to-one mapping between RGB and XRF signals,
thus it produced artifacts in the region where the visible
and non-visible components overlap. Our proposed method
produced the SR result closest to ground truth. Notice that
the non-visible component (rectangle) is more blurry than the
visible component (airforce target), since it is super-resolved
by a TV regularizer and does not use any HR RGB image
information.

D. Real Experiments

For our first real experiment, the real data was collected
by a Bruker M6 scanning energy dispersive XRF instrument,
with 4096 channels in spectrum. Studies from XRF image #3

Metric GSOMP [7] CSUSR [8] NSSR [9] Baseline #1 Baseline #2 Proposed
RMSE 3.42 0.70 3.85 2.03 0.59 0.50
PSNR 37.51 51.36 36.46 42.03 52.83 54.12
SAM 22.78 3.19 18.46 8.38 2.10 2.00

TABLE I
EXPERIMENTAL RESULTS ON SYNTHETIC DATA COMPARING DIFFERENT SR METHODS DISCUSSED IN SECTION V-B IN TERMS OF RMSE, PSNR AND

SAM. BEST RESULTS ARE SHOWN IN BOLD.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

(a) LR Inputs (b) GSOMP

(c) CSUSR (d) NSSR

(e) Baseline #1 (f) Baseline #2

(g) Proposed Method (h) HR Ground Truth

Fig. 7. Visualization of the SR result of the synthetic experiment. Region of
interest of channel #210 - 230 is selected. (a) is the LR input XRF image. (b),
(c), (d), (e), (f), (g) are the SR result of GSOMP [7], CSUSR [8], NSSR [9],
Baseline #1, Baseline #2 and proposed method, respectively. (h) is the HR
ground truth image.

scanned from Vincent Van Gogh’s “Bedroom” (Fig. 1) are
presented here.

We first validated that the proposed method in Equation (9)
can accurately represent the XRF spectrum, and that the
reconstructed spectral signal has a higher SNR compared to
the original spectral signal.

As shown in Fig. 8, our proposed approach provides accu-
rate reconstruction of the original signal. The XRF dictionary
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Fig. 8. The reconstruction of a spectrum using our proposed method. The
reconstructed spectrum is shifted vertically (100 counts) for visualization
purposes.

is trained from all spectral signals of the XRF image based on
minimizing the Euclidean distance between the reconstructed
and the original signals. As a result, noise is reduced, and the
reconstructed signal has higher SNR compared to the original
signal.

For our first real experiment, HR ground truth was not
available to assess the quality of the reconstructed HR XRF
images. This is because all XRF maps we had access to were
low resolution and noisy. We compare the visual quality of
different SR methods on the region of interest of channel
# 611 - 657, corresponding to CrK XRF peak, in Fig. 9.
Hyperspectral SR method GSOMP [7] produced a noisy output
in (c), because it relies on an accurate degradation model
from XRF signal to RGB signal. Hyperspectral SR methods
CSUSR [8] and NSSR [9] update the XRF dictionary to
ensure the fidelity to LR input, so they produce less noise
as compared to GSOMP [7]. However, they either create non
existing content in (d) or lose existing content in (e), in the
towel regions. Baseline method #1 creates a blurry SR result,
since it does not utilize an HR RGB image. Also it fails to
resolve the fine detail in the towel region. Baseline method
#2 produced visually satisfactory SR results, but failed to
reconstruct the line between the wall and the floor. This is
because of the one-to-one mapping assumption incorrectly
maps brown pixels in the table and the line between the wall
and the floor to the same XRF spectra. Our proposed method
in (h) produces both a visually satisfactory result as well as
strong similarity with the original LR input (a).

For our second real experiment, the real data was collected
by a home-built X-ray fluorescence spectrometer (courtesy of
Prof. Koen Janssens), with 2048 channels in spectrum. Studies
from XRF image scanned from Jan Davidsz. de Heem’s
“Bloemen en insecten” (ca 1645), in the collection of Konin-
klijk Museum voor Schone Kunsten (KMKSA) Antwerp,
are presented here. The original XRF image has dimension
680× 580× 2048. We first spatially downsample the original
XRF image by factor 5 and obtain the input LR XRF image
with dimension 136×116×2048. Then different SR methods
are applied to increase the spatial resolution of the LR XRF
image by factor 5. Notice that because the original HR XRF
image is noisy and blurry, it is different from the HR ground
truth. However, we can still use it as a reference to compute
the RMSE, PSNR and SAM metrics to quantitatively compare
the performance of different SR methods. We can also use it
as a reference to visually compare different SR results with
the original HR XRF image.

As shown in Table II, our proposed method provides the
closest reconstruction compared to all other methods. The
traditional hyperspectral image SR methods (GSOMP [7] and
NSSR [9]) produce considerably greater reconstruction error.
Baseline #2 does not assume linear transformation model
from XRF spectrum to RGB and updates the XRF and RGB
endmembers simultaneously, resulting in better SR results.
Baseline method #1 produces SR results more similar to the
original HR XRF image compared to Baseline method #2,
since both SR results of Baseline method #1 and the original
HR XRF image are blurry. Finally, our proposed method
produces a result most similar to the input HR XRF image,
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Metric GSOMP [7] CSUSR [8] NSSR [9] Baseline #1 Baseline #2 Proposed
RMSE 75.18 70.20 79.72 70.35 70.43 69.83
PSNR 42.70 55.66 49.70 56.06 54.93 56.19
SAM 32.60 12.30 25.81 11.60 12.98 11.32

TABLE II
EXPERIMENTAL RESULTS ON “BLOEMEN EN INSECTEN” COMPARING DIFFERENT SR METHODS DISCUSSED IN SECTION V-B IN TERMS OF RMSE,

PSNR AND SAM. BEST RESULTS ARE SHOWN IN BOLD.

(a) LR XRF Input (b) HR RGB Input

(c) GSOMP (d) CSUSR

(e) NSSR (f) Baseline #1

(g) Baseline #2 (h) Proposed Method

Fig. 9. Visualization of the SR result of the real experiment on the “Bedroom”.
Region of interest of related to CrK peak (channel #611 - 657) is selected. (a)
is the LR input XRF image and (b) is the HR input RGB image. (c), (d), (e),
(f), (g), (h) are the SR result of GSOMP [7], CSUSR [8], NSSR [9], Baseline
#1, Baseline #2 and proposed method, respectively.

demonstrating the effectiveness of our proposed method.
The visual quality of different SR methods on the region

of interest of channel #582 - 602, corresponding to Pb Lη
XRF emission line, is compared in Fig. 10. Notice that the
two long rectangles in the origin HR XRF image (h) are

the stretcher bars under the canvas, which is not visible on
the RGB image. Hyperspectral SR methods CSUSR [8] and
GSOMP [7] in (c) and (d) produce noisy results and produce
visible artifacts in many regions again. Baseline method #1
in (e) improves SNR compared to the origin HR XRF image.
However, its SR result is blurry and fails to resolve the details
on the flowers. Baseline method #2 in (f) utilizes HR RGB
image as input, so its SR result is sharp and many details
are resolved. However, because it does not model the non-
visible component of the XRF image, it fails to precisely
reconstruct the two hidden stretcher bars. Also when compared
to the origin HR XRF image (h), it produces many artifacts,
such as the textures of the flower in the middle, edges and
stems. Our proposed method in (g) successfully reconstructs
the non-visible stretcher bars. The reconstructed stretcher bars
are blurry compared to other objects, because it does not utilize
any information from the HR RGB image. More details are
resolved by our proposed method. When compared to the
origin HR image (h), we can conclude that those resolved
details have high fidelity to the original HR image (h). The
SNR is also improved by our proposed method.

VI. CONCLUSION

In this paper we presented a novel XRF image SR frame-
work based on fusing an HR conventional RGB image. The
XRF spectrum of each pixel is represented by an endmembers
dictionary, as well as the RGB spectrum. We also decomposed
the input LR XRF image into visible and non-visible compo-
nents, making it possible to find the non-linear mapping from
RGB spectrum to XRF spectrum. The non-visible component
is super-resolved using a standard total variation regularizer.
The HR visible XRF component and HR non-visible XRF
component are combined to obtain the final HR XRF image.
Both synthetic and real experiments show the effectiveness of
our proposed method.
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(a) LR Input (b) HR RGB Image

(c) CSUSR (d) GSOMP

(e) Baseline #1 (f) Baseline #2

(g) Proposed Method (h) Original HR XRF Image

Fig. 10. Visualization of the SR result of the DeHeem real experiment on the “Bloemen en insecten”. Region of interest of related to Pb Lη XRF emission
line (channel #582 - 602) is selected. (a) is the LR input XRF image and (b) is the HR input RGB image. (c), (d), (e), (f), (g) are the SR result of CSUSR [8],
GSOMP [7], Baseline #1, Baseline #2 and proposed method, respectively. (h) is the original HR XRF image. Readers are suggested to zoom in in order to
compare the details of different results.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

REFERENCES

[1] M. Alfeld, J. V. Pedroso, M. van Eikema Hommes, G. Van der Snickt,
G. Tauber, J. Blaas, M. Haschke, K. Erler, J. Dik, and K. Janssens,
“A mobile instrument for in situ scanning macro-xrf investigation of
historical paintings,” Journal of Analytical Atomic Spectrometry, vol. 28,
no. 5, pp. 760–767, 2013.

[2] A. Anitha, A. Brasoveanu, M. Duarte, S. Hughes, I. Daubechies, J. Dik,
K. Janssens, and M. Alfeld, “Restoration of x-ray fluorescence images
of hidden paintings,” Signal Processing, vol. 93, no. 3, pp. 592–604,
2013.

[3] C. M. Pieters and P. A. Englert, Remote geochemical analysis, elemental
and mineralogical composition, 1993, vol. 1.

[4] D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target
detection using the linear mixing model,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 39, no. 7, pp. 1392–1409, 2001.

[5] M. Alfeld, W. De Nolf, S. Cagno, K. Appel, D. P. Siddons,
A. Kuczewski, K. Janssens, J. Dik, K. Trentelman, M. Walton et al.,
“Revealing hidden paint layers in oil paintings by means of scanning
macro-xrf: a mock-up study based on rembrandt’s an old man in military
costume,” Journal of Analytical Atomic Spectrometry, vol. 28, no. 1, pp.
40–51, 2013.

[6] R. Kawakami, J. Wright, Y.-W. Tai, Y. Matsushita, M. Ben-Ezra, and
K. Ikeuchi, “High-resolution hyperspectral imaging via matrix factoriza-
tion,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. IEEE, 2011, pp. 2329–2336.

[7] N. Akhtar, F. Shafait, and A. Mian, “Sparse spatio-spectral represen-
tation for hyperspectral image super-resolution,” in Computer Vision–
ECCV 2014. Springer, 2014, pp. 63–78.

[8] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral super-
resolution by coupled spectral unmixing,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 3586–3594.

[9] W. Dong, F. Fu, G. Shi, X. Cao, J. Wu, G. Li, and X. Li, “Hyperspectral
image super-resolution via non-negative structured sparse representa-
tion,” 2016.

[10] R. C. Hardie, M. T. Eismann, and G. L. Wilson, “Map estimation for
hyperspectral image resolution enhancement using an auxiliary sensor,”
Image Processing, IEEE Transactions on, vol. 13, no. 9, pp. 1174–1184,
2004.

[11] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Bayesian fusion of hy-
perspectral and multispectral images,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014, pp. 3176–3180.

[12] N. Akhtar, F. Shafait, and A. Mian, “Bayesian sparse representation
for hyperspectral image super resolution,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3631–3640.

[13] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Total variation super
resolution using a variational approach,” in Image Processing, 2008.
ICIP 2008. 15th IEEE International Conference on. IEEE, 2008, pp.
641–644.

[14] A. Marquina and S. J. Osher, “Image super-resolution by tv-
regularization and bregman iteration,” Journal of Scientific Computing,
vol. 37, no. 3, pp. 367–382, 2008.

[15] J. Yang, Z. Wang, Z. Lin, X. Shu, and T. Huang, “Bilevel sparse coding
for coupled feature spaces,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2360–2367.

[16] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary
training for image super-resolution,” Image Processing, IEEE Transac-
tions on, vol. 21, no. 8, pp. 3467–3478, 2012.

[17] J. Sun, J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using
gradient profile prior,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[18] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Computer Vision–ECCV 2014.
Springer, 2014, pp. 184–199.

[19] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Variational bayesian
super resolution,” Image Processing, IEEE Transactions on, vol. 20,
no. 4, pp. 984–999, 2011.

[20] Z. Wang, D. Ziou, C. Armenakis, D. Li, and Q. Li, “A comparative
analysis of image fusion methods,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 43, no. 6, pp. 1391–1402, 2005.

[21] A. Garzelli, F. Nencini, L. Alparone, B. Aiazzi, and S. Baronti, “Pan-
sharpening of multispectral images: a critical review and comparison,”
in Geoscience and Remote Sensing Symposium, 2004. IGARSS’04.
Proceedings. 2004 IEEE International, vol. 1. IEEE, 2004.

[22] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the
2006 grs-s data-fusion contest,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 45, no. 10, pp. 3012–3021, 2007.

[23] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” Selected Topics in
Applied Earth Observations and Remote Sensing, IEEE Journal of,
vol. 5, no. 2, pp. 354–379, 2012.

[24] N. Keshava and J. F. Mustard, “Spectral unmixing,” Signal Processing
Magazine, IEEE, vol. 19, no. 1, pp. 44–57, 2002.

[25] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution as
sparse representation of raw image patches,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008, pp. 1–8.

[26] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” Image Processing, IEEE Transactions on, vol. 19,
no. 11, pp. 2861–2873, 2010.

[27] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1-2, pp. 459–494, 2014.

[28] R. H. Yuhas, A. F. Goetz, and J. W. Boardman, “Discrimination among
semi-arid landscape endmembers using the spectral angle mapper (sam)
algorithm,” 1992.

[29] T. F. Coleman and Y. Li, “A reflective newton method for minimizing
a quadratic function subject to bounds on some of the variables,” SIAM
Journal on Optimization, vol. 6, no. 4, pp. 1040–1058, 1996.

[30] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 689–696.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 12

APPENDIX A
OPTIMIZATION SCHEME FOR BASELINE #1

Let Al ∈ RM×Nl be the spatially downsampled abundance
A. The dictionary learning technique in [30] can be applied
to initialize Dxrf and Al by solving

min
Dxrf ,Al

‖X −DxrfAl‖2F + β
∑Nl

k=1 ‖Al(:, k)‖1,

s.t. ‖Dxrf (:, k)‖2 ≤ 1,∀k.
(31)

Dxrf is initialized using Equation 31 and A is initialized by
upsampling Al computed in Equation 31.

Similar to the optimization scheme of our proposed method
(Equation 14), Equation 28 can be alternatively optimized.
First we optimize over A by fixing Dxrf ,

min
A
‖X −DxrfAS‖2F + λ‖∇(DxrfA)‖2F (32a)

s.t. Aij ≥ 0,∀i, j (32b)

1TA = 1T, (32c)
‖A‖0 ≤ s, (32d)

PALM is utilized to optimize over A. For Equation 32, the
following two steps are iterated until convergence:

V q = Aq−1

− 1

d
(DxrfT (DxrfAq−1S −X)ST

+ λDxrfTDxrfAGGT )

(33a)

Aq = proxA(V q), (33b)

where d2 = γ2‖DxrfDxrfT ‖F are non-zero step size con-
stants, and proxA is the proximal operator that project V q

onto the constraints of Equation 32.
We then optimize over Dxrf solving the following con-

strained least-squares problem:

min
Dxrf

‖X −DxrfAS‖2F
s.t. 0 ≤ Dxrf

ij ≤ 1,∀i, j,
(34)

using the following iteration steps:

Uq = Dxrf q−1

− 1

dxrf
(Dxrf q−1

AS −X)STAT
(35a)

Dxrf q = proxDxrf (Uq), (35b)

where dxrf = γ4‖AAT ‖F is the non-zero step size constant
and proxDxrf is the proximal operator which project Uq onto
the constraints of Equation 34.

The complete optimization scheme is demonstrated in Al-
gorithm 2.

Algorithm 2. Proposed Optimization Scheme of Equation 28

input: LR XRF image X .
1: Initialize Dxrf (0) and Al(0) by Equation (31);

Initialize A(0) by upsampling Al(0);
n = 0;

2: repeat
3: Estimate A(n+1) with Equation 33;
4: Estimate Dxrf (n+1) with Equation 36;
5: n=n+1;
6: until convergence
output: HR XRF image

Y = DxrfA.

APPENDIX B
OPTIMIZATION SCHEME FOR BASELINE #2

For Equation 30, A, Dxrf and Drgb can be initialized by
Equation 13. We then alternatively optimize the unknowns in
Equation 30. We first update A based on the RGB image by
fixing all other parameters,

min
A
‖I −DrgbA‖2F (36a)

s.t. Aij ≥ 0,∀i, j (36b)

1TA = 1T, (36c)
‖A‖0 ≤ s, (36d)

utilizing the following iteration steps:

V q = Aq−1 − 1

d
DrgbT (DrgbAq−1 − I) (37a)

Aq = proxA(V q), (37b)

where d = γ1‖DrgbDrgbT ‖F is non-zero step size constants,
and proxA is the proximal operator that project V q onto the
constraints of Equation 36.

We then update Drgb

min
Drgb

‖I −DrgbA‖2F
s.t. 0 ≤ Drgb

ij ≤ 1,∀i, j.
(38)

by the following iteration steps:

Eq = Drgbq−1 − 1

drgb
(Drgbq−1

A− I)AT (39a)

Drgbq = proxDrgb(Eq), (39b)

with drgb = γ3‖AAT ‖F again a non-zero step size constant
and proxDrgb the proximal operator that projects Eq onto the
constraint of Equation 38.

Finally we update Dxrf

min
Dxrf

‖X −DxrfAS‖2F
s.t. 0 ≤ Dxrf

ij ≤ 1,∀i, j,
(40)

using the following iteration steps:



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 13

Uq = Dxrf q−1 − 1

dxrf
(Dxrf q−1

AS −X)STAT (41a)

Dxrf q = proxDxrf (Uq), (41b)

where dxrf = γ4‖AAT ‖F is the non-zero step size constant
and proxDxrf is the proximal operator which project Uq onto
the constraints of Equation 40.

The complete optimization scheme is summarized in Algo-
rithm 3.

Algorithm 3. Proposed Optimization Scheme of Equation 30

input: LR XRF image X , HR conventional RGB image I .
1: Initialize Drgb(0), Dxrf (0) and Al(0) by Equation (13);

Initialize A(0) by upsampling Al(0);
n = 0;

2: repeat
3: Estimate A(n+1) with Equation 37;
4: Estimate Drgb(n+1) with Equation 39;
5: Estimate Dxrf (n+1) with Equation 41;
6: n=n+1;
7: until convergence
output: HR XRF image

Y = DxrfA.


