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ABSTRACT

Fourier ptychography is an imaging technique that overcomes
the diffraction limit of conventional cameras with applications
in microscopy and long range imaging. Diffraction blur causes
resolution loss in both cases. In Fourier Ptychography, a co-
herent light source illuminates an object, which is then im-
aged from multiple viewpoints. The reconstruction of the ob-
ject from these set of recordings can be obtained by an itera-
tive phase retrieval algorithm. However, the retrieval process is
slow and does not work well under certain conditions. In this
paper, we propose a new reconstruction algorithm that is based
on convolutional neural networks and demonstrate its advan-
tages in terms of speed and performance.

Index Terms— Fourier Ptychography, Convolutional Neu-
ral Network, CNN

1. INTRODUCTION

Imaging using traditional optical systems is constrained by the
space-bandwidth product (SBP) [1], which describes the trade-
off between high resolution and large field of view. Fourier
ptychography (FP) is a coherent imaging technique which aims
to overcome the SBP limitation by capturing a sequence of SBP
limited images and computationally combining them to recover
a high resolution, large FOV image and thus overcoming the
SBP barrier. Fourier ptychography has been applied to wide
field, high resolution microscopy [2], quantitative phase imag-
ing [3], adaptive fourier ptychography imaging [4], long dis-
tance, sub diffraction imaging [5] and other applications. In
fourier ptychography, a high resolution image is recovered from
a set of frequency limited low resolution images of an object
illuminated with coherent light source. To achieve this, an iter-
ative phase retrieval algorithm [6] recovers the phase informa-
tion that is lost in the incoherent imaging process. A detailed
overview of different phase reconstruction techniques can be
found in [7, 8].

Iterative phase retrieval algorithms performs well if the set
of low resolution images have overlapping frequency bands in
the fourier domain, but the reconstruction quality quickly de-
grades as the overlap between the Fourier patches decreases [9].
The requirement of overlap between neighboring patches re-
quires sequential scanning to obtain all the low resolution im-
ages and hence, a major barrier to single shot ptychography
[10]. Reducing or eliminating the overlap-requirement would
lead to a much faster aquisition time. In this paper, we foucs
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Fig. 1: Example setup for Fourier Ptychography (FP). Coherent
light diffracts through a translucent medium into the far-field. A
lens samples a portion of the Fourier domain which is recorded
as intensity images at the sensor. See Section 2.1 for details.

on the algorithm for retrieving the high resolution image. In
place of a phase retrieval algorithm, we propose a Convolu-
tional Neural Network (CNN) based solution (PtychNet), that
directly restores the image in the spatial domain without explic-
itly recovering the phase information. CNNs have been proven
to be very effective for image classification [11–13], and have
become increasingly popular with other image processing tasks
such as super-resolution [14–16], image segmentation [17], etc.

We show that PtychNet obtains better reconstruction results
in considerably less time if the low resolution images have no
overlapping frequency bands. When the low-resolution images
contain overlapping support in the frequency domain, we can
use PtychNet to significantly reduce the computation time of
an iterative phase retrieval algorithm.

The remainder of the paper is organised as follows. In Sec-
tion 2 we briefly introduce Fourier Ptychography, in Section
3 we explain our proposed framework PtychNet. Sections 4
contains our results and experimental evaluation and Section 5
concludes the paper.

2. FOURIER PTYCHOGRAPHY

2.1. Image Formation Model

Consider the generalized imaging setup shown in Figure 1. A
monochromatic source with wavelength λ illuminates a trans-
parent object. Let the 2D complex field that emanates from
the object be denoted as ψ(x, y). If a camera is placed in the
far-field and satisfies the Fraunhoffer approximation, the field
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Fig. 2: Example of image acquisition in Fourier Ptychogra-
phy. N ×N images with limited, overlapping frequency bands
are captured to recover one high resolution image. Image used
from [5] with permission.

incident on the lens is a scaled Fourier transform of the scene,

ψ̂(u, v) = F 1
λz
{ψ(x, y)} ,

where λ is the wavelength of illumination, z is the distance be-
tween object and lens, ψ̂(u, v) is the field at the lens and (u, v)
are coordinates in the frequency domain. The frequency spec-
trum is limited by the finite aperture of the lens, A(u− cu, v−
cv), where (cu, cv) is the center the lens. The lens focuses
the light onto the image plane–which also satisfies the Fraun-
hofer approximation–and the intensity of the resulting field is
recorded by the sensor. The measured intensity is thus given by

I(x, y, cu, cv) ∝
∣∣∣F {ψ̂(u, v)�A(u− cu, v − cv)}∣∣∣2 (1)

where � signifies an element-wise multiplication. For simplic-
ity, we will drop the the scaling factor of the Fraunhofer ap-
proximation in this paper, though it may be accounted for after
image reconstruction if desired.

To emulate capturing the scene with a larger lens, N im-
ages are captured by translating the lens, (cu, cv), to cover a
larger portion of the Fourier spectrum. An example of the data
acquisition process is shown in Figure 2.

2.2. Iterative Error Reduction Algorithm

Recovering the complex field ψ̂(u, v) from the set measured
intensity images Ii, i = 1, . . . , N , is a non-convex optimiza-
tion problem. That is, recovering ψ̂(u, v) reduces to solving
the optimization problem:

ψ̂∗ = argminψ̂
∑
i

||ψi −FAiψ̂||2 s.t. |ψi|2 = Ii,
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Fig. 3: Block diagram for IERA used in [5], modified with
permission.

where the spatial arguments have been omitted for compact-
ness. For an ideal lens with radius r, light within the sup-
port is passed uniformly and all other light is rejected, A =
||(u− cu, v − cv)||2 ≤ r.

Conventional methods estimate ψ̂(u, v) using variations on
iterative error reduction algorithms (IERAs) that enforces mag-
nitude constraints in the spatial domain and support constraints
in the Fourier domain [6, 7]. Figure 3 shows the block diagram
of the IERA used in [5].

3. PTYCHNET

We propose a learning based algorithm of recovering the high
resolution image based on Convolutional Neural Networks. An
overview of the algorithm is shown in Figure 4 Our network
learns a non-linear mapping from the intensity images Ii to the
original input light field ψ. Both, input Ii and output ψ are
in the spatial domain. The inverse filters of the band-passes ap-
plied to the original light field can be approximated with convo-
lutional filters and the reconstruction process is locally indepen-
dent which makes this a well-suited problem for a CNN. The
input data of the CNN consists of the concatenation of all the
intensity images Ii to a 3D-cube with dimensions w× h×N2

where w and h are the width and height of the image and N2

are the number of sampled images. The output of the CNN will
directly be the desired high resolution field ψ.

3.1. Architecture

The proposed CNN is based on the architecture used in [14]. It
consists of three convolutional layers. The two hidden layers
H1 and H2 are each followed by a ReLU activation function.
The first layer has 64 kernels with a kernel size of 9 × 9. The
second layer has 32 kernels with a size of 5 × 5 and the out-
put layer has a kernel size of 5 × 5. The output layer has only
one kernel that will directly produce the reconstructed image in
the spatial domain ψ. The weights are initialized with random
gaussian distributed values with a standard deviation of 0.001.
We use the Euclidean distance as our loss function. Experi-
ments with TV-minimization as loss function did not lead to
any improvements in PSNR.
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Fig. 4: PtychNet Overview

3.2. Training Procedure

Our algorithm is implemented with the Caffe framework [18].
We trained our CNN on 91 publicly available images from
Set91 [19]. We converted the images to gray-scaled images
and resized them to w × h pixels, where w = h = 512 pixels.
These images represent our groundtruth data ψ. The forward
model from equation 1 was applied to these images to obtain
a collection of low quality intensity images Ii. The resulting
intensity images Ii were resized to w × h pixels and then
concatenated to a 3D-cube of size w × h × N2. From these
cubes, we extracted about 15,000 patches of size 48×48×N2

which were used as training database to the CNN. Note that
since both the input and the output image of the CNN are in
the spatial domain, our reconstruction algorithm is spatially
invariant and therefore we can divide the input and output data
into patches and process them independently. In order to avoid
border effects due to the zero-padding for the convolutional
layers, we only use the 32×32 center pixels of a training patch
to calculate the Euclidean loss. We created training datasets of
input images with overlapping and non-overlapping frequency
bands. For the non-overlapping case, we achieved better per-
formance, if we subtracted the center input image (image at
coordinates 0, 0 in Figure 2) from the reconstructed output
image. This approach is similar to the idea of residual net-
works [13]. Our networks were trained for 200,000 iterations
with a batch size of 256.

4. EXPERIMENTAL RESULTS

In this section, we tested the effectiveness of our CNN by com-
paring it against the IERA algorithm proposed in [5]. We tested
out algorithm on the commonly used resolution chart (resChart)
and lena image. In addition, we used the Set5 images from
[19] .We used PSNR and SSIM as our performance metric.The
IERA algorithm was evaluated at 100 iterations as the results
of IERA did not improve much after 100 iterations. We tested
it with the following 2 overlap configurations:

• With 0% Overlap

• With 61% Overlap

where overlap is the percentage of overlap area of the input
images in the frequency domain (see Figure 2b). As a baseline,
we show the center image (referred to as Center) from the
input image set (image at position 0, 0 in Figure 2d), which
corresponds to the low pass filtered original image.

4.1. Without overlap

Table 1 shows the PSNR and SSIM results for the non-
overlapping case. Results are shown for the Center image,
IERA and PtychNet. Figure 5 shows the original image and the
reconstructed images for the center image, Lena and resChart.
We can see that PtychNet produces superior results, both visu-
ally as as well as in terms of PSNR/SSIM. Gains from IERA to
PtychNet are between 0.6 and 2.1 dBs

4.2. With overlap

The IERA and PtychNet images for 61% overlap are shown
in Figure 6. Visually, the IERA reconstructed resChart looks
more detailed and sharper. The difference in Lena is much less
obvious. IERA also outperforms PtychNet in terms of PSNR.
Interestingly, the difference of resChart (IERA:18.28, Ptych-
Net:18.04) is much smaller than for Lena (IERA:31.52, Ptych-
Net :29.53). For Set5, the IERA outperforms PtychNet by an
average of 2.4dBs (IERA:35.02, PtychNet:32.61).

However PtychNet has a much less runtime than IERA. As
a comparison, the runtime for a 512 × 512 pixel image for
IERA with 100 iterations is about 1 minute, while PtychNet
completes in about 0.5 seconds. The IERA algorithm is ini-
tialized with the mean image (mean over the 49 input images).
Alternatively, we use the output of the PtychNet as initializa-
tion image. This leads to a significantly faster convergence of
the algorithm, since it is by itself already a good reconstruction
of the original image. In Figure 7, we show the average PSNR
versus iteration graph for Set5. For comparison, we also ini-
tialized the IERA with the center input image, whose bandpass
filter is centered around the zero frequency (0,0). While IERA
with mean init needs roughly 30 iterations to converge, the Pty-
chNet initialization only requires about 6 iterations to reach the
maximum PSNR, which reduces the recovery time by factor
5 and converges to the same PSNR. For the resChart image,
the PtychNet initialization even results in a slightly better qual-
ity. For all seven test images, the PSNR differs no more than
0.02dBs for the different initialization methods. Hence we can
achieve the same performance with IERA, but 5 times faster.

Image Metric Center IERA PtychNet
lena PSNR 25.11 24.68 25.82

SSIM 0.6828 0.6488 0.7146
resChart PSNR 14.41 12.92 15.05

SSIM 0.1981 0.1357 0.2536
baby PSNR 25.97 25.46 26.50

SSIM 0.6836 0.6488 0.7030
bird PSNR 28.49 28.50 29.70

SSIM 0.8175 0.8068 0.8537
butterfly PSNR 21.47 21.57 23.24

SSIM 0.6201 0.5866 0.7258
head PSNR 30.48 30.01 30.67

SSIM 0.7295 0.6964 0.7410
woman PSNR 24.93 24.82 25.83

SSIM 0.7611 0.7431 0.8106

Table 1: PSNR and SSIM without overlap
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Fig. 5: Results with 0% overlap

IERA PtychNet
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Fig. 6: Results with 61% overlap

5. CONCLUSION

We introduced a recovery algorithm for fourier ptychography
based on Deep Learning. To the best of our knowledge, there

Fig. 7: Avg. PSNR over Set5 vs. Iterations for IERA with dif-
ferent initializations. PtychNet initialization shows faster con-
vergence compared to mean and center initializations.

is no pre-existing work on CNN based fourier ptychography al-
gorithm. We show that in case of non-overlapped fourier sam-
pling, CNNs performed significantly better than the existing
IERA algorithm, both, in terms of speed and resolution. Al-
though IERA performs better than PtychNet with overlapping
fourier sampling, PtychNet reduces the runtime of the IERA by
a factor of 5.
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