CS-ToF: High-resolution Compressive time-of-flight imaging

Fengqiang Li, Chia-kai Yeh, Kuan He, Oliver Cossairt (Northwestern University) Huaijin Chen, Adithya Pediredla, Ashok Veeraraghavan (Rice University)

fengqiang.li@u.northwestern.edu

Time of flight

Image credit: Donald Griffin

Pulsed light based ToF

□ Raster scanning

Schwarte et al., SPIE Proceeding, 1997

Continuous-wave ToF

Schwarte et al., SPIE Proceeding, 1997

8

Autonomous cars

HCI

Robotics

VR/AR

Autonomous cars

HCI

Non-Line-of-Sight imaging

Transient imaging

11

Robotics

Low spatial resolution

○ 640×480 pixels (0.3 mega) vs 120-megapixel CMOS

Low spatial resolution

- 640×480 pixels (0.3 mega) vs 120-megapixel CMOS
- Extra circuits for each pixel
- Limited wafer size

Previous work

Work directly on ToF camera output:

- Edge guidance
- Defocus debluring
- Fuse ToF output with a second camera:
- o RGB camera
- Stereo, Photometric stereo, Shape from polarization

Optical multiplexing

Objects

Spatial light modulator-SLMToF camera(High resolution)(low resolution)

Multiple Pixels (e.g. 3×3) on spatial light modulator projected on One Pixel of ToF camera

Motivation for optical multiplexing

Higher resolution compared to algorithm based method
No need to fusion with different image modalities
Resolution is dependent on SLM

Compressive sensing

dulator

amera

ToF output (y)

Intensity (a)

depth (d)

ToF output: intensity (a) and depth (d)
Phasor: $a \circ e^{i\frac{4\pi f}{c}d} = a \circ e^{i\phi}$

Imaging forward model

□ High resolution scene projection on modulator (x)

High resolution scene projection on modulator (x)
Spatial light modulator pattern (M)

- □ High resolution scene projection on modulator (x)
- □ Spatial light modulator pattern (M)
- □ Translation matrix from modulator to ToF camera (C)

СМх

Imaging forward model $\mathbf{y} = \mathbf{a}_t \circ e^{i\phi_t}$

- □ High resolution scene projection on modulator (x)
- □ Spatial light modulator pattern (M)
- □ Translation matrix from modulator to ToF camera (C)
- □ ToF camera output (y)

Imaging forward model

 \Box ToF Output y_i with modulation pattern M_i

y = CMx = Ax

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda \Phi(\mathbf{x})$$

$$\Phi(\mathbf{x}) = TV(\mathbf{x}) = \sum_{i} \sqrt{|G_u(x_i)|^2 + |G_v(x_i)|^2}$$

Simulation

□ High resolution scene

- Middlebury 3D Datasets
- Size: 1140x912
- $\Box A_t$ simulated system $A = CM_t$
 - \circ M_t Hadamard multiplexing patterns on DMD at t-th measurement
 - \circ C mapping matrix, defined as spatial down-sampling by averaging

Low resolution measurements

- Simulated through via $y_t = A_t x$
- Size: 120×153

Ground truth

Original LR ToF measurement HR reconstruction (15%)

Ground truth

Original LR ToF measurement

Texas Instrument DLP 4500: 1140×912 pixels
ToF camera: Texas Instrument OPT 8241 320×240 (186×200 pixels)

Original LR ToF Measurement

Pixel scanning

-

네豆4

mæs nes

12.

4.0

3D scene

Native

No compression

CS: 0.6

CS: 0.25

HR reconstruction (no compression)

Native

No compression

CS: 0.6

CS: 0.25

Depth resolution

No depth resolution improvement
Depth resolution is better than bicubic interpolation

Project Page

http://compphotolab.northwestern.edu/project/cs-tof-high-resolution-compressive-time-of-flight-imaging/