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Abstract: Three-dimensional imaging using Time-of-flight (ToF) sensors is rapidly gaining
widespread adoption in many applications due to their cost effectiveness, simplicity, and compact
size. However, the current generation of ToF cameras suffers from low spatial resolution due to
physical fabrication limitations. In this paper, we propose CS-ToF, an imaging architecture to
achieve high spatial resolution ToF imaging via optical multiplexing and compressive sensing.
Our approach is based on the observation that, while depth is non-linearly related to ToF pixel
measurements, a phasor representation of captured images results in a linear image formation
model. We utilize this property to develop a CS-based technique that is used to recover high
resolution 3D images. Based on the proposed architecture, we developed a prototype 1-megapixel
compressive ToF camera that achieves as much as 4 × improvement in spatial resolution and 3 ×
improvement for natural scenes. We believe that our proposed CS-ToF architecture provides a
simple and low-cost solution to improve the spatial resolution of ToF and related sensors.
© 2017 Optical Society of America
OCIS codes: (150.0150 ) Machine vision; (110.6880) Three-dimensional image acquisition; (100.6640) Superresolution;
(100.6890) Three-dimensional image processing; (100.3190) Inverse problems.
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1. Introduction

Three-dimensional (3D) sensors are being adopted in a number of commercial applications
including self-driving cars [1] and robotics [2]. In this paper, we focus on 3D Time-of-Flight
(ToF) based sensors. ToF cameras can be broadly classified into two categories based on the
illumination signal: pulsed/LIDAR [3,4] and continuous wave amplitude modulated (CWAM)
ToF cameras, also referred as lock-in ToF cameras [5, 6]. In this paper, we focus on CWAM-ToF
and use the abbreviation ‘ToF’ to describe them for the remainder of this paper. ToF cameras
[7–9] are a practical and promising approach for inexpensive active 3D sensing with range
independent depth resolution (as compared to stereo or multiview triangulation [10, 11]) and
compact form factor (as compared to light detection and ranging (LIDAR) devices [4]). In the last
decade, other novel imaging applications using ToF cameras have also been developed. Heide
et al. [12] and Kadambi et al. [13] created transient captures of light with ToF camera systems
based on photonic mixer devices. Heide et al. [14] designed a doppler time-of-flight system that
can compute the 3D velocity of the objects instead of depth. A fundamental limit of performance
in all these applications is the low spatial resolution that is achieved [7, 15].

Why are ToF sensors low resolution? A ToF imager is a focal plane array that simultaneously
encodes the scene’s intensity and depth information at each pixel. ToF cameras typically consist
of an amplitude modulated light source that actively illuminates the scene and is coupled with a
correlation sensor at each pixel that is locked-in to the same frequency. Multiple measurements
are obtained with different amount of phase shift between transmitted and detected light. The
amplitude modulation in most ToF cameras is performed at a modulation frequency in the 10-100
MHz range and this frequency controls both the unambiguous range of depths and the depth
resolution of the ToF sensor. Additional electronics is required to implement the correlation
measurement individually at each pixel, requiring a significantly larger number of transistors
per-pixel. Thus, while the pixel size of traditional CMOS image sensors have approached close
to 1 micron with a fill factor greater than 90%, current generation ToF sensors can only achieve
pixel sizes closer to 10 microns with fill factors closer to 10% [16,17].
As a consequence ToF sensors with a given footprint (which is typically constrained by die

size in the semiconductor fabrication process) will always remain significantly lower resolution
than their RGB imaging counterparts. Increasing the overall sensor size (or die size) is generally
cost prohibitive as manufacturing cost grows exponentially with the size of the wafer. Therefore,
improving ToF spatial resolution without increasing sensor size is an area of significant potential
interest [18].
Previously, hybrid ToF systems that combine ToF with other imaging modalities like stereo

[19,20], photometric stereo [21], and polarization [22], have been used to achieve super-resolution
(SR) performance with commercial ToF cameras. However, these hybrid ToF systems need
advanced fusion algorithms and careful registrations between ToF camera and the other imaging
modality. Xiao et al. [23] also used deblurring techniques for super resolution using purely
software-based techniques. Super-resolution (SR) algorithms were also used to captured ToF
images to improve both lateral and depth resolution [18]. Learning-based approaches such as
dictionary learning [24,25] and deep learning [26] have also been used to improve resolution.
However, there is a critical difference between our CS-ToF and conventional SR algorithms.
Software-based techniques cannot arbitrarily increase resolution. In contrast, CS-ToF perform
time-multiplexed optical coding whereby each additional acquired image introduces new spatial
information. If temporal resolution is sacrificed, CS-ToF can achieve the full spatial resolution
of a DMD. Resolutions as high as 2MP can be achieved using currently available off-the-shelf
commercial products.

Can optical multiplexing and compressive sensing (CS) help? Optical multiplexing leverages
spatial light modulators (SLMs) to achieve high-resolution imaging with a limited number of
sensing elements. Digital micro-mirror devices (DMDs) and liquid crystal on silicon (LCoS) are
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examples of relatively low cost, commercially available SLMs with at least 1-megapixel resolution.
Applications of optical multiplexing include infra-red imaging [27], spectroscopy [28–31], and
light transport [32]. By combining compressive sensing and optical multiplexing, we can greatly
reduce the number of measurements needed. One of the earliest examples of this is the single
pixel camera [33], in which only a single photodiode is used to recover images consisting of
256 × 256 pixels. A single photodiode with compressive sensing has also been used for depth
estimation of the imaged scene [3, 34, 35]. In this paper, we introduce a focal array ToF sensor to
increase the measurement bandwidth compared to previous methods using single photodiodes.
Compressive imaging models for single-pixel video sensing [36,37] have been proposed, and
recently there has been work on improving the video rate of compressive imaging using 1D line
sensors [38] and 2D focal-plane arrays [39]. The key idea in these approaches is to use a spatial
light modulation (SLM) to multiplex spatial information into just a few measurements and utilize
transform-domain sparsity to reconstruct images at higher resolution than the sensor can natively
support.

In this paper, we extend the idea of multiplexed/compressive sensing of spatial information to
both intensity and depth images. While the transform-domain sparsity of natural images applies
equally well to depth images, the depth is non-linearly related to the intensity measured at each
pixel on a ToF sensor. While this property can significantly complicate the reconstruction process,
the complication can be avoided by adopting a slightly modified signal representation. Gupta [40]
and O’Toole [41] first used a phasor representation to modeling ToF sensors. In the phasor
representation, the multiplexing of multiple scene points onto a single sensor measurement can be
written as a linear mixing model, thereby allowing us to naturally extend CS-based reconstruction
techniques to ToF sensors (CS-ToF).
We present CS-ToF, a novel imaging architecture, to improve the spatial resolution of ToF

sensors by performing spatial multiplexing and compressive sensing. We utilize a phasor
representation to model the phase and amplitude component of captured correlation signals,
resulting in a linear forward model. During CS-based reconstruction, we regularize the amplitude
of the reconstructed phasor using a transform-domain sparsity prior. This results in a significant
reduction in the number of measurements required for recovery of depth and intensity images
with high resolution. In this paper, we introduce the proposed ToF imaging architecture, introduce
reconstruction algorithms, and demonstrate a working prototype capable of high-resolution
compressive ToF imaging using the proposed framework.

2. CS-ToF

In this section, we first describe our proposed CS-ToF system architecture. We then introduce the
ToF imaging model in the presence of the DMD, and explain the DMD-based linear multiplexed
measurement model using a phasor representation. Finally, we describe the reconstruction
procedure.

2.1. System architecture

The system architecture is shown in Fig. 1. A near-IR laser diode is used to illuminate the scene.
The scene is formed on a DMD using an objective lens. The high-resolution DMD-modulated
image is then relayed to the low-resolution ToF camera. By changing the coding on the DMD
over the course of multiple exposures, we are able to perform spatiotemporal multiplexing of
the scene. We can then reconstruct high-resolution amplitude and depth images from multiple
low-resolution ToF measurements.

2.2. ToF imaging

ToF is an active 3D imaging technique with a light source as shown in Fig. 2. Both the illumination
source (laser diodes) and the shutter of a ToF camera are amplitude-modulated, typically at the
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Fig. 1. CS-ToF architecture: The light from the laser diode hits the object and is reflected and
imaged on the DMD. Then, the DMD-modulated image is re-imaged at the ToF sensor plane
via a relay lens. The laser diode, DMD, and ToF camera are controlled and synchronized by
a computer.

same frequency ω. Let the output of the laser diodes be m(t) and the coding at the shutter be
r(t − ψ), where ψ is an arbitrary phase delay that can be introduced at the shutter. While the
modulated light m(t) travels through space, some part of this light can be reflected by an object at a
distance d. Some of this reflected light will reach a sensor pixel p. The light received at the sensor
pixel will retain the amplitude modulation frequency ω but will be phase delayed (φp =

ωdp

2c , dp

is the distance of the object) and attenuated (apm(t − φp)). The sensor measurement at the pixel
p, for an exposure duration T will be:

B(p, ψ) =
∫ T

t=0
apm(t − φp)r(t − ψ)dt (1)

Coded illumination

Controller
ToF camera

Object

𝑚(𝑡)

𝑟(𝑡 − 𝜓)

𝐵(𝑝,𝜓)

Fig. 2. ToF depth imaging (assume single depth): The computer sends out two signals:
m(t) to control the laser diode and r(t − ψ) as reference to ToF sensor. The reflection from
object (apm(t − φp)) is collected by ToF pixels, and then correlates with the reference signal
(r(t − ψ)) to generate the camera’s output.

In most commercial ToF cameras, including the one employed in this paper, the illumination
and the reflected signals are of the form:

m(t) = om + am cos (ωt) (2)

r(t) = or + ar cos (ωt − ψ) (3)

where om, am, or, and ar are constants. By varying the delay ψ on r(t), one can capture the
entire correlation between the reflected signal and the exposure signal. Using demodulation



techniques, the reflected signal can be completely recovered. However, most conventional ToF
sensors use only four measurements (referred as quadrature measurements) that correspond to
ψ = 0, π/2, π, 3π/2, to recover the amplitude ap and the phase φp of the reflected signal, as given
by the formulae:

a(p) =
√
[B(p, 3π/2) − B(p, π/2)]2 + [B(p, π) − B(p, 0)]2

2
(4)

φ(p) = arctan
(

B(p, 3π/2) − B(p, π/2)
B(p, π) − B(p, 0)

)
. (5)

Clearly, the phase and amplitude are non-linearly related to the correlational measurements.

2.3. Phasor representation

A linear model relating the scene to the ToF camera measurement is required to recover a high
resolution estimate of the scene via compressive sensing. For example, assume two ToF pixels p1
and p2 with corresponding amplitude and phase of (ap1, φp1 ) and (ap2, φp2 ). If we combine p1
and p2 to form a super-pixel p, the resulting amplitude and the phase at the super-pixel is not
(ap1 + ap2, φp1 + φp2 ).
Following the approach of O’Toole [41] and Gupta [40], we use a phasor representation for

the ToF output as a complex signal aeiφ to build a linear model for our system. For consistency,
we similarly represent the scene’s projection onto the DMD x as a complex value encoding its
intensity as and phase φs . The phasor representation for the object’s projection on the DMD and
ToF sensor are:

x = aseiφs (6)

y = aeiφ (7)

Now, we can use this phasor representation to build the linear measurement model from the
scene’s projection onto the DMD to ToF sensor.

2.4. Measurement model
As shown in Fig. 1, the scene (x) is first projected onto the DMD plane, and modulated with a
coded spatial pattern displayed on the DMD. Then, the image on the DMD plane is projected to
the ToF camera via the relay lens. We can then write our measurement model as:

y = CMx = Ax (8)

where C is the mapping from the DMD pixels to the ToF pixels. M is the modulation pattern
displayed on the DMD. A = CM, which represents the translation matrix from the scene’s
projection on DMD to the ToF camera.
The measurement model can be explicitly written as

y = Ax ⇒

α′1eiφ

′
1

...

α′Meiφ
′
M

 =


C11 · · · C1N
...

. . .
...

CM1 · · · CMN




M1
...
...

MN


I


α1eiφ1

...

...
αN eiφN


(9)

where M and N are the total number of ToF pixels and DMD pixels respectively.
During the measurement, we record y of a given scene x by T times with displaying a series of

patterns on DMD. Assuming the scene x stays relatively still across the period of T measurements,
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we can approximate the measurement process as
y1
y2
...

yT


=


A1x
A2 x
...

AT x


=


A1
A2
...

AT


x (10)

where At = CMt , t ∈ [1, 2, ...T]. Mt is the coded pattern displayed on the DMD at time t.

2.5. Reconstruction procedures
From the measurements y and system matrix A, we will reconstruct the scene’s projection on
the DMD x. Given the fact that natural images have sparse gradients, we can formulate the
reconstruction procedure as the following optimization problem.

x̂ = argmin
x

1
2
‖y − Ax‖2 + λΦ(x) (11)

where λ is a regularization parameter and Φ(x) is the regularizer.
In this paper, we utilize total variation (TV) as the regularization function defined as

Φ(x) = TV(x) =
∑
i

√
|(Gu(xi)|2 + |Gv(xi)|2 (12)

where |Gu(xi)|2 and |Gv(xi)|2 are the horizontal and vertical gradients of 2D image x at pixel
location i. In our experiment, we use TwIST solver to reconstruct the image [42] with more
details below.

3. Implementation details

In this section, we discuss some key aspects of our prototype implementation. The hardware
prototype is shown in Fig. 3. We use a Fujinon 12.5mm C-Mount Lens to image the scene onto
the 1140 × 912-pixel DMD (DLP LightCrafter 4500, Texas Instruments). The DMD-modulated
images are then re-imaged using an Edmunds Optics Relay Lens. Finally, a 320 × 240-pixel ToF
sensor (OPT8241, Texas Instruments) is placed at the focal plane of the relay lens. During the
experiment, imaging areas of 186 × 200 pixels on ToF sensor are used.

DMD

Objective Lens

TIR

Prism
Relay

Lens

ToF

Sensor

NIR Light 

Source

Fig. 3. CS-ToF prototype system with components of the system are highlighted.
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3.1. System calibration

The purpose of system calibration is to estimate the system matrix A, which depends upon various
factors such as the DMD pattern, up-sampling factor, artifacts, as well as optical aberrations and
distortion.
As discussed previously, in our system matrix A = CM, DMD mask M is the known pattern

displayed on the DMD. Therefore, we need to determine the matrix C describing the exact
mapping from DMD pixels to ToF camera pixels.
As shown in Fig. 4, first, we display an array of pixel impulses on the DMD, and record the

point spread function (PSF) on the ToF camera. We carefully choose the spacing between the
DMD impulses to accommodate ToF sensor size and avoid overlapping the PSF on the ToF
sensor. As a result, there are 360 impulses per frame. Once we record the image containing the
360 PSFs on the ToF, we select a 5 × 5 neighborhood around each PSF center, and create 360
images only containing one PSF for each image. We vectorize each single-PSF image and insert
it into its corresponding column in C.
We repeat the above procedures by shifting the impulse array by one pixel, until we traverse

every DMD pixel. Eventually, we get a sparse matrix C that represents pixel-to-pixel mapping
between the DMD and the sensor.

DMD Vector

M x N

NM

Sensor Vector Mapping Matrix C
DMD Impulses Sensor PSFs Single Sensor PSF

DMD impulse location determines the column index 

Vectorized Single 
Sensor PSF

Fig. 4. System Calibration: Calibration is performed by displaying an array of impulses on
the DMD and measuring the sensor response for each individual impulse in the array. The
response is then placed in the corresponding location in C. We traverse every DMD-sensor
pixel pair to complete the matrix C.

3.2. Modulation pattern on DMD

To ensure measurement quality in the presence of noise, we use Hadamard patterns [31] as the
modulation masks displayed on the DMD. We generated a 256 × 256 Hadamard matrix. We
use each column of the Hadamard matrix to form a 16 × 16 local pattern. We repeat each local
pattern across both the horizontal and vertical directions until it fills the entire DMD plane. We
repeat this process to generate all 256 patterns used in our experiments.

3.3. Reconstruction

We use the MATLAB implementation of the TwIST solver [42] to reconstruct the images from
the multiplexed compressive measurements. We performed the reconstruction tasks on a Desktop
Windows PC with Intel i7 CPU and 32GB RAM running MATLAB with no parallel computing
optimization. Reconstructing each output image takes about 30-120 seconds, depending on the
compression ratios. With more compression (less number of multiplexed measurements), the
reconstruction is faster. The wall time to reconstruct the intensity and depth images with 0.25
compression ratio showing below is about two minutes. The DMD DLP4500 used in this paper
does not have a well-designed application programming interface (API) for modulation pattern
transmission and synchronizing with the ToF camera. Therefore, extra time is spent on file
input/output, synchronization, and customed controlling codes. Potentially, with a better DMD
that has good interfacing with the camera and the computer, the wall time can be greatly reduced.
Though we cannot perform real-time video-rate reconstruction currently with TwIST, we do

not think the solver would be a potential roadblocks in the future. There are a variety of TV
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a. Original LR ToF Measurement

b. Pixel scanning

Fig. 5. Pixel scanning of a resolution target: (a) shows original low-resolution ToF measure-
ment of the resolution chart target. (b) shows the pixel-wise scanning for the resolution
target. Color boxes mark corresponding insets.

based complex numerical solver for linear inverse problem available off-the-shelf. One can also
exploit the sparsity in transform domain of natural images, such as DCT or wavelet, and use
L1/Lasso-based regularizer or solver. If real-time reconstruction is a hard constraint, one can use
block-wise parallel reconstruction to accelerate the de-multiplexing. Further more, there are also
suitable solvers with GPU acceleration, such as [43].

4. Experiments and results

To demonstrate the performance of our proposed setup, three experiments with resolution chart,
Siemens Star, and natural static scene are performed using CS-ToF camera.

4.1. Pixel scanning

Setup: To understand the maximum spatial resolution of the proposed CS-ToF prototype system,
we first perform a per-pixel scanning experiment on a USAF 1951 target. In this experiment, we
do not acquire multiplexed measurements. Instead, each time, we turn on a DMD pixel and record
the response on the ToF sensor. We repeat this process until we scan through all possible DMD
pixels. This brute-force process is similar to the one we used for system calibration, except the
flat field is replaced by the USAF target. Once finished, an image at the DMD’s native resolution
is formed.
Pixel scanning reconstruction: Since the resolution target is flat, we receive a flat phase map.
Therefore we show only the amplitude pixel-scanning image in Fig. 5. As one can observe, the
quality of high-resolution (HR) pixel-scanning results (Fig. 5(b)) is dramatically improved over the
original low-resolution (LR) ToF measurement (Fig. 5(a)). We show details of Group1 Element6
(marked with blue box) in the insets, where details are well-preserved in the pixel-scanning
results, but totally missed in the original LR measurement. The pixel scanning experiment result
has demonstrated the CS-ToF ability to increase the spatial resolution of the ToF sensor by about
4×.
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4.2. Resolution chart

Setup: To evaluate the spatial resolution our CS-ToF prototype can achieve, we perform
experiments on standard resolution targets, including the USAF 1951 Resolution Chart and
Siemens Star. The size of the resolution chart and Siemens star are approximately 18 × 15 cm2

and 15 × 15 cm2, respectively. The target is approximately 0.5 meters away from camera. The
experiment setup is visualized in Fig. 6(a). We perform compressive sensing and reconstruction
using 4.5 (no compression), 0.6, and 0.25 compression ratios.

Laser diode

CS ToF

Binary 

Target

b. Binary target

Laser diode

CS ToF
3D scene

d. 3D Scene

a. Setup for binary depth c. Setup for 3D scene

Fig. 6. Real-world experiment setups: (a) Conceptual diagram of the resolution target
experiment. (b) Photo of the resolution targets used. (c) Conceptual diagram of the natural
scene experiment. (d) Photo of the natural scene

Intensity reconstruction: The original LR ToF intensity image and HR intensity images recov-
ered by CS-ToF are shown in Fig. 7. Overall, less compression helps improve the reconstruction
quality, but 0.25 compression ratio still provides a qualitatively acceptable reconstruction result.

For the USAF target, we are able to see much finer bars in the HR intensity images recovered
by CS-ToF in Figs. 7(b)-7(d), compared to the original LR ToF measurement shown in Fig. 7(a).
Particularly, we can see the Element 1 in Group 0 inside the blue bounding box for all CS-ToF
results at different compression ratios, which are completely indistinguishable in the original LR
measurement. This implies that the resolution improvement is 2 to 3×, which is consistent with
the pixel-scanning result.

For the Siemens Star, the original LR ToF measurement fails to characterize the high frequency
component close to the center of the star (marked with red box). Whereas the CS-ToF results at
different compression ratios are able to resolve the high frequency component.

4.3. 3D natural scene

Setup: To evaluate the real-world performance of the CS-ToF prototype, we perform an
experiment on a natural scene. As shown in Figs. 6(c) and 6(d), we construct the scene containing
a toy tree, a metal star, two groups of toy bricks, a hollow resolution chart, and a white board, all
of which are placed at different depths ranging from 0.5 to 1m away from the sensor. We perform
compressive sensing and reconstruction using 4.5, 0.6, and 0.25 compression ratios.
Phase or depth reconstruction: The original LR ToF measurement and HR reconstructed
phase images using CS-ToF are shown in Fig. 8. Similar to resolution chart results, reconstruction
with 0.25 compression ratio can generate a reasonable phase image.

Compared to LR TOF phase image (Fig. 8(a)), more details in the recovered HR phase images
(Figs. 8(b)–8(d)) are resolved. For instance, tree leaves (insets marked with red box) can be
clearly visualized in the recovered HR phase images with different compression ratios (Figs.
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Photos of the Scenes

a. Original LR ToF measurement b. HR reconstruction (no compression)

c. HR reconstruction (0.6) d. HR reconstruction (0.25)

Fig. 7. Intensity reconstruction of resolution charts: (a), (b), (c), and (d) show the original
LR ToF intensity image, HR CS-ToF reconstruction results with no compression, 0.6 and
0.25 compression ratios, respectively. Fine patterns on resolution chart and the center of
Siemens Star are shown in the insets. Ground truth intensity of the insets, taken with a
12-MP camera, are displayed on the left.

8(b2)–8(d2)), but they are obscured in the LR ToF phase image (Fig. 8(a2)). Furthermore, details
of a single leaf, in the inset marked with dash black box (Fig. 8(a3)), can be clearly seen in the
recovered HR phase images (Figs. 8(b3)–8(d3)).

Another example can be seen from the far “resolution chart". As marked with green box in the
photograph in the left, the scene consists of two components at different depths: a portion of a
resolution chart with original bars removed and the white board behind. The LR ToF phase image
(Fig. 8(a1)) can hardly differentiate the depths in this region. However, the boundary between
the two components (marked with red arrows) are preserved and can be clearly seen from the
recovered HR phase images (Figs. 8(b1)–8(d1)).

a. Original LR ToF measurement b. HR Reconstruction (no compression)

c. HR Reconstruction (0.6) d. HR Reconstruction (0.25)

Photos of the Scenes
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Fig. 8. Phase reconstruction for a natural scene: (a), (b), (c), and (d) show LR ToF phase
image and HR CS-ToF reconstruction phase images using no compression, 0.6 and 0.25
compression ratios, respectively. Colorbars show the depth information with unit of meter .
A portion of the far resolution chart and the white board behind is also shown in the insets
(a1-d1) with their corresponding photograph (marked with green box) in the left. Red arrows
point out the boundary of two planes at different depths in (a1) and the corresponding
photograph. Leaves and their branches on ”toy tree" are shown in the insets (a2-d2)with their
corresponding photograph (marked with red box) in the left. Close-up images of (a2-d2) are
further shown in (a3-d3).



Intensity reconstruction: The LR ToF intensity image and recovered HR intensity images are
shown in Fig. 9. As we can see, branches of leaves (insets marked with red box) can be seen in
the recovered HR intensity images Figs. 9(b2-d2), but are hard to be distinguished in the LR
ToF intensity image (Fig. 9(a2)). Other examples can be seen from the center of the metal star:
even the screw (marked with red dash circle in Fig. 9(a1)) can be visualized in the recovered HR
images (Figs. 9(b1-d1)). More tiny features such as the tip of the spike (red arrows in Fig. 9(a1))
can be observed from the recovered HR intensity images (Figs. 9(b1)–9(d1)).

a. Original LR ToF measurement b. HR reconstruction (no compression)

d. HR reconstruction (0.25)c. HR reconstruction (0.6)

Photos of the Scenes a1  

a2  

c1  

c2  

b1  

b2  

d1 

d2  

Fig. 9. Intensity reconstruction for a natural scene: (a), (b), (c), and (d) show LR ToF
intensity image and HR CS-ToF reconstruction intensity image using no compression, 0.6
and 0.25 compression ratios, respectively. Fine patterns on the toy tree and the metal star
are shown in the insets ((a1-d1, a2-d2)) with their corresponding photographs on the left
(marked with the green box, and the red box). Note the screw on the metal star (marked with
the red dashed circle) and the tip of the metal star (marked with the red arrow).

5. Discussion

Artifacts: Some artifacts can be seen in the recovered intensity images. The artifact is due
to imperfect alignments and calibration for the A matrix. This can be minimized by more
careful calibration or advanced noise subtraction algorithms. In this paper, we tried background
subtraction, non-local means filter and band-pass filter in the Fourier domain to minimize the
artifacts in the recovered intensity images.
Small ToF sensor fill factor: In our proposed setup, multiple (eg. m pixels) DMD pixels
approximately project onto one pixel of the ToF sensor. Theoretically, the scene on the DMD
should be a uniform brightness with darker at the periphery due to vignetting, unlike our
observation in Fig. 10(a). This discrepancy is likely due to the low fill factor of the ToF, which
causes missed DMD-ToF mapping information to be missed in the calibration of matrix A. This
in turn causes aliasing, visible in Fig. 10(b), an effect typical of all low fill factor sensors. We can
mitigate this effect with conventional sensor anti-aliasing approaches, such as placing a diffuser
on the surface of the sensor or slightly defocusing the projection onto the ToF camera. The effect
of such low-pass filtering can be seen in Figs. 10(c)–10(d).
Compressive reconstruction of complex value: Compressive reconstruction of complex value
is an interesting challenge [44]. Methods have been discussed for different imaging models
using CS reconstruction of complex inputs such as terahertz (THz) imaging, synthetic aperture
radar, holography, etc [45, 46]. Regularizer and parameter choice can have significant effect the
reconstruction quality, including CS reconstructions using our proposed architecture. Future work
may provide more insight into the best selection of CS approaches for this particular application.
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a b

c d

Fig. 10. Scene projected on DMD plane with white field illumination: (a). The scene on
DMD with ToF camera placed at the back focal plane of the relay lens. (c). The same scene
on DMD with ToF camera slightly defocused. Color boxes represent insets in (a) and (c).

Spatiotemporal tradeoff: A key advantage of the CS-ToF is the flexibility of trading-off
among spatial resolution, temporal resolution and image quality. The maximum spatial resolution
(g) is limited by the physical resolution of the DMD or SLM, which is g = 1.04 megapixel
(MP) (1140 × 912) in our prototype. The ToF sensor in our prototype has a usable imaging
area of s = 186 × 200 = 0.037MP and can operate at f = 150 f ps maximum. Therefore the
maximum measurement bandwidth b = f · s = 5.55MP/s. The temporal resolution (t), and
image quality is dependent on the number of measurement M we use for reconstruction. At
each measurement, we take s coded samples of the ”ground truth” image on the DMD. For
example, if image quality is not a concern, we can use M = 1 measurement to perform the
reconstruction, therefore c = s · m/g = 3.6% compression ratio is achieved, and the temporal
resolution is t = f /m = 150 f ps. As demonstrated in our manuscript, high-quality reconstruction
requires a minimum of M = 7 frames, resulting 0.037 × 7/1.04 = 0.25 compression ratio and
150/7 = 21.4 f ps temporal resolution.
Temporal (depth) super resolution: The phasor representation can be a linear model in spatial
domain for ToF, but it is non-linear in the temporal domain which prevents us from using our
proposed setup for depth super resolution.
Depth accuracy: A simulation experiment has been performed to quantify the depth accuracy
of our CS-ToF framework. We assume that DMD has 1140 × 912 pixels and the ToF sensor
has 120 × 153 pixels in the simulation experiment. A 3D scene (Fig. 11(a)) with ground truth
depth (Fig. 11(b)) is chosen from the Middlebury Dataset [47]. The intensity and depth images
of the ground truth scene have the size of 1140 × 912 pixels. The translation matrix from the
DMD plane to the ToF sensor plane in our CS-ToF framework is simulated in the same method
described in Section 3.1 with a custom-defined PSF. The responses on the ToF sensor are acquired
using the forward model described above with Hadamard patterns used in Section 3.2. We then
reconstruct the HR CS-ToF images with the same reconstruction algorithm described in Section
2.5 using 0.6 and 0.2 compression ratios. Gaussian noises with signal-to-noise ratios (SNR) of
30dB, 25dB, and 20dB are added in the ToF measurements.

To quantify the depth accuracy of our CS-ToF, depth values from the same regions marked with
red lines in the ground truth depth image (Fig. 11(b)) and the HR CS-ToF reconstruction depth
image with 0.6 compression ratio (Fig. 11(d)) and 0.2 compression ratio (Fig. 11(e)), are selected
and compared. To make a fair comparison, the bicubic interpolation of LR ToF measurement
depth (Fig. 11(c)) is also generated by down-sampling the ground truth image to 120 × 153
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pixels as the regular ToF response and then up-sampling to the same size with the ground truth.
Figures 11(c)–11(e) are generated with 25 dB SNR Gaussian noise in the measurements. Figures
11(f)–11(h) show the depth values of pixels along the red lines with different Gaussian noises
added into the measurements. The root mean square error (RMSE) of HR CS-ToF reconstruction
depth compared to the ground truth depth is then calculated using the data shown in Figs. 11(d)
and 11(e). We also quantify the RMSE of LR ToF depth with bicubic interpolation compared to
the ground truth depth. The results are summarized in Table 1. Although the depth accuracy of
CS-ToF might be worse compared to the regular ToF imaging due to optical multiplexing in the
CS-ToF, it has better depth accuracy compared to that of bicubic interpolation of the LR ToF
measurement.
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a. Photo of the scene

f. Depth values with 30dB SNR g. Depth values with 25dB SNR h. Depth values with 20dB SNR

c. Bicubic interpolation of 
LR ToF depth

b. Ground truth depth

d. HR CS-ToF reconstruction 
depth (0.6)

e. HR CS-ToF reconstruction 
depth (0.2)

Fig. 11. The quantification of depth accuracy for CS-ToF: (a). The photograph of the 3D
scene for the simulation experiments. (b). The ground truth depth for the 3D scene. (c). The
bicubic interpolation of LR ToF measurement depth with 25 dB Gaussian noise added in
the system. (d), (e) show the HR CS-ToF depth iamges with 0.6 and 0.2 compression ratios,
respectively. (25 dB Gaussian noise is added in the measurements). (f) shows the depth
values along the red lines in (b-e) with 30dB SNR Gaussian noise in the measurements. (g)
shows the depth values on the same pixels with (f) with 25dB SNR Gaussian noise added. (h)
shows the depth values on the same pixels with (f) with 20dB SNR Gaussian noise added.

Table 1. RMSE of LR ToF measurement depth with bicubic interpolation and HR CS-ToF
reconstruction depth with respect to the grouth truth depth.

RMSE with
30dB SNR

(mm)

RMSE with
25dB SNR

(mm)

RMSE with
20dB SNR

(mm)
Bicubic Interpolation of LR ToF 24.2 25.2 28.3
HR CS-TOF reconstruction (0.6)1 19.3 19.3 19.7
HR CS-TOF reconstruction (0.2)2 19.0 19.3 19.5

1 (0.6): The reconstruction is with the compression ratio of 0.6.
2 (0.2): The reconstruction is with the compression ratio of 0.2.



6. Conclusion

In this paper, we have proposed an architecture for high spatial resolution ToF imaging. We utilize
a phasor representation to achieve a linear compressive sensing model, which we demonstrate
using experimental hardware. We believe CS-ToF camera has provided a simple and cost-effective
solution for SR 3D imaging, which might benefit many 3D imaging applications such as improving
the accuracy for 3D detection and tracking.
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