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Abstract: Despite recent advances, high performance single-shot 3D microscopy remains an
elusive task. By introducing designed diffractive optical elements (DOEs), one is capable of
converting a microscope into a 3D "kaleidoscope", in which case the snapshot image consists
of an array of tiles and each tile focuses on different depths. However, the acquired multifocal
microscopic (MFM) image suffers from multiple sources of degradation, which prevents MFM
from further applications. We propose a unifying computational framework which simplifies
the imaging system and achieves 3D reconstruction via computation. Our optical configuration
omits optical elements for correcting chromatic aberrations and redesigns the multifocal grating
to enlarge the tracking area. Our proposed setup features only one single grating in addition to a
regular microscope. The aberration correction, along with Poisson and background denoising,
are incorporated in our deconvolution-based fully-automated algorithm, which requires no
empirical parameter-tuning. In experiments, we achieve the spatial resolutions of 0.35um (lateral)
and 0.5um (axial), which are comparable to the resolution that can be achieved with confocal
deconvolution microscopy. We demonstrate a 3D video of moving bacteria recorded at 25 frames
per second using our proposed computational multifocal microscopy technique.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Typically, an optical microscope focuses on one focal plane at a time. Thus, recovering 3D
information with sufficient resolution usually requires sequentially z-scanning the focal planes.
This process is time consuming and requires precise mechanical control. The long acquisition
time of focal scanning microscopy fundamentally prevents the applications in in vivo imaging,
especially when the 3D movement of biomedical objects is desired. To realize single-shot 3D
microscopy, a standard microscope has to be modified in such a way that 3D information can be
encoded onto a 2D plane.

One of the few modifications to achieve single-shot 3D microscopy, for example, is by placing
a diffractive optical element (DOE) in the Fourier plane of a standard microscope (Fig. 1a). The
DOE is designed as a distorted phase gratings [1–3], also referred to as a multifocal grating
(MFG). The MFG projects different depth layers in a 3D volume onto different sub-regions of the
imaging plane simultaneously. In particular, if the imaging plane is divided into l × l tiles and
each tile is focused on one focal plane by design, then a 3D volume of l2 depths can be retrieved
by z-stacking all the tiles. An l = 3 case is shown in Fig. 1(c). This imaging technique is also
referred as multifocal microscopy (MFM) [4].
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Fig. 1. Single-DOE multifocal microscopy (MFM) setup (a) and computational 3D
reconstruction pipeline (d-f). In (a), a conventional microscope is augmented by a 4 f
system. An MFG (b) is inserted at the Fourier plane of the 4 f system to produce an array of
l × l differently focused tile images in a single exposure (c; l = 3). Note that our CMFM
system discards CA corrective optics, significantly reducing the system complexity and cost
compared to conventional MFM. We correct for CA computationally rather than optically.
(d-f) The pipeline of proposed computational framework: by capturing a z-stack 3D PSFs (d),
the algorithm can simultaneously recover the background noise b∗, the optimal regularizer
parameter λ∗ and a high resolution 3D image (f) from a single captured 2D MFM image (e).

MFM stands out among other single-shot 3D microscopy, e.g. light field microscopy [5, 6]
and lensless 3D coded microscopy [7–9], for its capability of achieving diffraction-limited 3D
resolution comparable to conventional focal scanning microscopy. However, as an imaging
system, MFM faces several imaging issues, some of which are even more severe than other 3D
microscopic modalities that prevents MFM from broader applications:

• Out-of-focus blur. MFM captures an array of multifocal planes. Like standard wide-field
microscopy, each focal plane image is convolved by out-of-focus light. Estimating and
removing out-of-focus blur requires implementation of a 3D deconvolution algorithm.
Our proposed algorithm builds on the regularized Richardson-Lucy (RL) deconvolution,
and features automatic estimation of the background noise and the optimal regularizer
parameter.

• Chromatic aberration (CA). Conventionally, CA is optically corrected by adding a
chromatic correction gratings (CCG) and a multifacet prism after the MFG [4], resulting in
excessive hardware cost. In our work, we propose a simplified version by abandoning the
CCG and the prism. Instead, we place a 15 nm bandpass filter in front of the detector to
mitigate CA, as shown in Fig. 1(a). We demonstrate that the resolution loss due to CA can
be computationally compensated. This comes from a fact that CA from MFG is directional
due to tile geometry. In each tile, the PSF is stretched mainly in one direction, but
preserves imaging quality in the orthogonal direction. Therefore, by jointly incorporating
all the PSFs in each tile, our proposed 3D deconvolution algorithm enables restoring the
resolution loss due to CA.

• Poisson noise due to limited photon budget. There are three factors that contribute to the
limited photon budget of the MFM. First, as mentioned before, a narrower bandpass filter
of 15nm is used to mitigate CA, and thus, the total number of emission photons arriving
at the detector is smaller than when using CA corrective optics. Second, the theoretical
maximum efficiency of the MFG is smaller than one. For example, the theoretical limits



are 68% for a binary phase-only (0 or π) MFG with 3 × 3 diffraction orders, and 78%
for a MFG with 5 × 5 diffraction orders, which means 32% or 22% of the total emission
light will be lost and cannot be collected by the detector. The efficiency can be improved
by using a multi-phase MFG [10] at the expense of the complicated fabrication process.
Third, each tile only shares about 1/l2 of the total photons. The limited photon budget
requires a noise modeling of Poisson process. We incorporate the Poisson noise modeling
for MFM, for the first time.

• Field-of-view (FOV). As described above, MFM trades lateral FOV for depth information.
Conventional MFM designs use large tile spacings for large objects. We address here that
this design is not optimal for tracking dynamic objects, which are usually small in size but
require large FOV. We analyze the FOV performance theoretically, and demonstrate that
by modifying the MFG design to create a smaller tile spacing, small objects (e.g. bacteria)
can be tracked over a larger lateral area than the tile width.

1.1. Related works

The 2D sensing limitation imposed by optical sensors makes 3D imaging an interesting and
active research topic both in macroscopic and microscopic regime. In microscopy, several
approaches have been proposed for a variety of imaging conditions. One scheme for achieving
3D imaging is to use coherent illumination, e.g. digital holographic microscopy [11–13],
variably-controlled light-emitting diodes (LED) arrays [14, 15], structured illumination [16], etc.
Yet the coherent modeling of light propagation does not apply to incoherent/fluorescent objects.
For the incoherent case, one seminal idea is to introduce self-interference by projecting a set
of Fresnel patterns [17–19]. However, most of the existing methods, especially for incoherent
cases, require multiple exposures and massive processing time. This limitation prevents broader
applications such as in vivo imaging as the motion of the objects during capture process is hard
to circumvent and thus, deteriorates the image quality [20,21]. Recent works have proposed to
reduce the measuring requirement by computationally exploiting spatial-temporal redundancy
of the scenes [22, 23]. Here, we review two types of computational microscopy that enable
single-shot 3D fluorescence imaging.

Light field microscopy (LFM).By introducing a microlens array on the primary image plane of a
microscopy, LFM encodes 4D (spatial-angular) information into a 2D image and computationally
recover the 3D objects [5, 6]. Because LFM trades spatial resolution for single-shot capture, its
spatial resolution is lower than that of the conventional microscope. Recently, a RL deconvolution
method based on the wave optics theory [24] is derived and demonstrated to improve the resolution
for LFM. So far, the best resolutions experimentally achieved by LFM are ∼ 1.4um and 2.6um [5]
in the lateral and axial dimensions respectively. In addition, due to the variation on sampling
density, the lateral resolution decreases to ∼ 3.75um at the focal plane [5].
Lensless 3D microscopy. Traditionally, lens-based cameras/microscopes map a point in the

scene to a pixel on the detector. Lensless imaging architectures, instead, replace the lens with
other encoding elements such that a point is mapped to many points on the detector and thus,
require computation to recover. Several seminal literatures have proposed to place a single
encoding element, such as a coded mask [7] or diffuser [9], directly in front of a detector.
Therefore, the imaging system is compact and cost-effective, and has large FOV. A computational
algorithm is then designed to make use of the physical effects, e.g. the Point Spread Functions
(PSF), to recover the 3D information of the scene. However, the spatial resolution of lensless 3D
microscopes is restricted to the pixel pitch of the detector. In particular, a lens-free fluorescent
imaging platform was reported to achieve the spatial resolution of ∼ 10um based on a compressive
sensing algorithm for sparse objects [8]. The recovered 3D volume consisted of two or three
depth layers with intervals of 50um or 100um.



1.2. Computational multifocal microscopy

Our computational imaging framework, which we call computational multifocal microscopy
(CMFM), balances and optimizes the processing capabilities of optics and computation. We
demonstrate a CMFM system [Fig.1(a)] that utilizes simplified optics, as well as algorithms that
correct for CA and low-photon counts. The pipeline of our computational framework is shown in
Fig.1(d-f).

We perform two experiments to demonstrate the effectiveness of our CMFM system. First, we
capture a static image of several frozen periplasms in 3D to demonstrate the spatial resolutions of
0.35um and 0.5um in the lateral and axial dimensions [see Fig. 7(d)], which are comparable to
those achievable with confocal deconvolution microscopy [see Fig. 7(b)]. Note that we compare
0.5s captures with our CMFM instrument to a 20s confocal scan taken with a dual spinning disk
confocal microscope (Model: CSU-W1) made by Yokogawa Electric Corporation. Our CMFM
results show similar 3D image quality, but achieve a 40x reduction in acquisition time. However,
we kindly remind readers that the principle of the axial resolution improvement is different for
the two techniques. Further discussion will appear in section 4.1. Second, we record a video of
in vivo bacterium at 25 frames per second (see Visualization 1) and perform high resolution 3D
reconstruction with tracking results (see Visualization 2) using our CMFM technique.

2. Methods

2.1. Image formation model

The image formation of our CMFM fluorescence system can be modeled as the axial integral of
the 2D convolution of the PSF with its corresponding depth layer. In the noiseless case, such
model can be written as:

g(x, y) =
∫ ∞

−∞
oz(x, y) ∗ hz(x, y)dz, (1)

where g is the observed 2D image, o is an unknown 3D volume, and h is 3D PSFs obtained by
capturing 2D images of a point source located at different depths. oz and hz are 2D slices of o
and h at axial depth z.
Here, we discretize o into Nx × Ny × Nz voxels in three dimensions. Each voxel has size

∆x × ∆y × ∆z . The 2D image g on the detector is sampled with Mx × My pixels. Each pixel has
size ∆′x × ∆′y . For a band-limited system, the Nyquist sampling rate has to be satisfied in order to
avoid aliasing. In MFM, the lateral cut-off frequency is fc = 2N A/λ, and therefore ∆′x ≤ 1/(2 fc)
and ∆′y ≤ 1/(2 fc). For simplicity, we set ∆x = ∆′x and ∆y = ∆′y in practice. In order to match o
and g dimensions, h is therefore of Mx × My × Nz voxels, with each voxel size of ∆′x × ∆′y × ∆z .
Then the discrete form of Eq. (1) can be written as a matrix-vector multiplication form:

g = [H1, · · ·,HNz ][o1, · · ·, oNz ]T = Ho (2)

where g is an M × 1 column vector, in which M = Mx × My , o is an N × 1 column vector, in
which N = Nx × Ny × Nz , and H is the sensing matrix of a size M × N . Note that each Hz is a
Toeplitz matrix representing 2D convolution, and can be constructed from hz .

Note that, in our case, two types of noise are considered. First, our imaging process has Poisson
noise due to the limited photon budget resulted from (1) the narrower bandpass filter, (2) the
lower diffraction efficiency of the MFG and (3) splitting of light. Second, the background noise
(room stray light, or the sample itself) is also considered. We assume a uniform background
photon noise across all the pixels in the acquired MFM image. Therefore, the image formation
model under the Poisson noise and additive background noise model can be expressed as

g = P {Ho + b} , (3)



where P represents Poisson statistics originated from signal photons, and b models the uniform
background noise. Note that b is an M × 1 column vector and each entry of b is a same constant,
denoted by b.

2.2. Joint regularized RL deconvolution

Equation (3) leads to the following likelihood function according to Poisson distribution

p(g|o, b) =
M∏
i=1

(Ho + b)gii e−(Ho+b)i

gi!
, (4)

where i stands for the pixel coordinate in g. In RL deconvolution, the optimal solution o∗ is
found from the observation g by maximizing Eq. (4), or equivalently minimizing its negative
logarithm, subject to all the voxels of the restored image have non-negative values, that is,

o∗ = arg max
o≥0

p(g|o, b) = arg min
o≥0

f (o, b), (5)

where

f (o, b) =
M∑
i=1
[(Ho + b)i − gi log (Ho + b)i] (6)

is the negative Poisson log-likelihood of p(g|o, b) in Eq. (4), in which a constant term log (gi!) is
omitted.
In regularized RL algorithm, a regularizer term is added to the objective function in Eq. (5).

Here, we consider total variation (TV) regularization because it can avoid the noise amplification
problem in RL deconvolution by allowing to recover a smooth and stable solution with sharp
edges. The objective function in the TV regularized RL algorithm is therefore written as

Φ(o, b, λ) = f (o, b) + λTV (o) , (7)

where λ is the regularization parameter and TV(o) = ∑N
j=1

√
(∆xoj)2 + (∆yoj)2 + (∆zoj)2, in

which j denotes the voxel coordinate in the o. Our joint algorithm estimates the 3D image, the
background noise and the regularization parameter simultaneously by minimizing Φ in Eq. (7)
subject to all the voxels of the restored 3D image have non-negative values, that is,

{o∗, b∗, λ∗} = arg min
o≥0,b,λ

Φ(o, b, λ). (8)

The minimization of Φ(o, b, λ) in Eq. (8) with respect to all three unknown variables can
be performed by an iterative alternating gradient descent method. More specifically, at each
iteration, the three variables are updated sequentially, and when one variable is updated, the other
two variables are fixed as constants.

2.2.1. Estimation of 3D image

To update o for (k + 1)-th iteration, we substitute ok, bk and λk estimated from k-th iteration in
Eq. (7), and take partial derivatives with respect to each voxel okj in ok

∂Φ(ok ; bk, λk)
∂okj

=

M∑
i=1

hi, j −
[
HT g

Hok + bk

]
j
− λkdiv

(
∇okj
|∇okj |

)
, (9)

where the divisions are element wise, hi, j is the entry in the i-th row and the j-th column of H,
and

∑M
i=1 hi, j = 1 if H is column normalized (which is equivalent to normalizing PSFs hz), and



Algorithm 1 Joint regularized RL algorithm for MFM
1: inputs: g and H . 2D MFM data and 3D PSFs
2: initialize: o0, b0, and λ0

3: set k = 0
4: while not convergence do
5: update ok+1 using ok, bk and λk in Eq. (10)
6: update bk+1 using ok+1, and bk in Eq. (12)
7: update λk+1 using ok+1, and bk+1 in Eq. (14)
8: k = k + 1
9: return: o∗, b∗, and λ∗ . joint estimations of 3 unknowns

div stands for the divergence operator. Given the partial derivative in Eq. (9), We update o using
the gradient-based algorithm (or equivalently by using expectation maximization algorithm),
defined by [25, 26]

ok+1
j =

[
HT g

Hok + bk

]
j

okj

1 − λkdiv
(
∇okj
|∇okj |

) ,
ok+1
j ≥ 0,

(10)

where the second line in Eq. (10) is to enforce the non-negativity on j-th reconstructed voxel.
Note that for 1 ≤ j ≤ N , all the voxels in o can be updated simultaneously by storing them in a
vector.

2.2.2. Estimation of the uniform background

When we have ok+1, we substitute ok+1, bk and λk in Eq. (7), and take partial derivatives with
respect to b

∂Φ(bk ; ok+1, λk)
∂bk

=

M∑
i=1

{
1 −

[ g
Hok+1 + bk

]
i

}
. (11)

Note that each pixel in the captured MFM image is assumed to have the same background value
b. Then we update b using the same gradient-based algorithm as is in 3D image estimation

bk+1 =

{
1
M

M∑
i=1

[ g
Hok+1 + bk

]
i

}
bk . (12)

2.2.3. Estimation of optimal regularization parameter

The approach of estimating optimal λ is based on the fact that when the optimal solution o∗ is
found, the partial derivatives with respect to each restored voxel okj in Eq. (9) should be equal or
close to zero. So the λ is obtained by minimizing the sum of the square of Eq. (9) over all the
reconstructed voxels [27]

λk+1 = arg min
λ

N∑
j=1
‖ ∂Φ(o

k+1; bk+1, λ)
∂ok+1

j

‖2. (13)



Because the objective function in Eq. (13) is a quadratic form of λ, the close form solution of λ
can be found by equating the derivatives of Eq. (13) with respect to λ to zero

λk+1 =

∑N
j=1

{
1 −

[
HT g

Hok+1+bk+1

]
j

}
div

(
∇ok+1

j

|∇ok+1
j |

)
∑N

j=1

[
div

(
∇ok+1

j

|∇ok+1
j |

)]2 . (14)

The joint regularized RL deconvolution algorithm is summarized in Algorithm 1. We performed
a series of simulations to evaluate the effectiveness and convergence of the joint regularized RL
algorithm for our CMFM system. The simulation results and convergence plots are shown in
Appendix A.

3. System analysis

A schematic of our CMFM imaging setup is shown in Fig. 1(a). A regular microscope (Nikon
Eclipse Ti) is augmented by a 4 f relay system (L1 = 200mm, Thorlabs AC508-200-A; L2 =
400mm, Thorlabs AC508-400-A). The total magnification of the whole system is 120× with the
use of 60× objective lens (Nikon 60x 1.27 NA CFI Plan Apo water immersion, MRD07650).
Fluorescence emission collected through the objective was separated from excitation light by a
dichroic mirror (Semrock, FF596- Di01-25x36) and bandpass filter (Semrock, FF02-641/75-25).
Excitation light was bandpass filtered (Semrock FF01-578/21-25) from A solid-state LED light
source (Lumencor, Spectral X light engine). An electron multiplying charge coupled device
(EMCCD, Andor iXon Ultral 888) has 1024 × 1024 pixels with pixel pitch 13um × 13um. Thus,
each pixel corresponds to a size of 108nm × 108nm in the object domain, which satisfies the
Nyquist sampling criterion. A multifocal grating (MFG) is placed at the Fourier plane of the 4 f
relay system. As an example, schematics of the MFG used in our first experiment is shown in Fig.
1(b). This MFG was optimized and designed to produce 3× 3 differently focused tile images on a
single 2D detector as shown in Fig. 1(c), with an equal focal step ∆z of 0.25um between adjacent
tiles and almost even light energy distribution of [7.56, 7.48, 7.21, 7.47, 7.62, 7.47, 7.21, 7.48, 7.56]
percent for each tile. A total diffraction efficiency of the MFG is therefore 67.06%, which is close
to the theoretical maximum efficiency. The details about the design and manufacture of the MFG
are provided in Appendix C. A second, narrower bandpass filter (Semrock, FF01-620/14-25) is
placed immediately before the camera to narrow the bandwidth of the emission light to mitigate
chromatic aberration. To avoid the overlapping between tile images, a field stop slightly smaller
than the tile width is placed at the intermediate image plane to reduce the lateral FOV [see Fig.
1(a)].

Next, we provide analysis on the Point Spread Function (PSF), the chromatic aberration (CA),
and the FOV of our CMFM system.

3.1. Point Spread Function (PSF) and resolution

We image a z-stack of a 200nm fluorescent bead (ThermoFisher, F8810), which approximates
an ideal light-emitting point, to measure PSF. Figure 2 (first row) shows CMFM lateral PSF
imaged under five different axial positions (columns). Each lateral PSF consists of 3 × 3 tiles,
with one tile in focus (outlined by a green box; also zoomed in second row) and eight tiles out of
focus. From left to right, as the focus depth increases, we can observe a focal shift on the axial
direction of the x-z plots of PSFs (third row). The Optical Transfer Functions (OTFs) are plotted
as reference (bottom two rows).
We measure the full-width half-magnitude (FWHM) values to quantify the resolution. Note

that the PSFs are affected by chromatic aberration and the lateral resolution is anisotropic.
Therefore, we perform a principle component analysis (PCA) of xy PSFs. The FWHM values
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Fig. 2. A z-stack 3D PSFs of CMFM, measured from a 170nm fluorescent bead. Top row:
CMFM lateral PSFs imaged under five different axial positions (columns). each PSF consists
of one focused image (outlined by a green box) and eight out-of-focus version images of
the bead. xy and xz PSFs (second and third rows) and corresponding OTFs (bottom two
rows) of five differently focused tiles (columns). The focal shift property of CMFM can be
observed from xz PSFs (third row), verifying that CMFM is capable of capturing a focal
stack instantaneously. Although the central tile’s PSF CA-free (first column), the off-axis
tiles’ PSFs suffer from directional CA (second to last columns) due to geometry. The lateral
spatial frequencies that are lost by CA are shown in xy OTFs (fourth row).

of those five tiles’ PSFs (second row) are {0.32, 0.87, 1.17, 0.87, 1.17}um in the CA direction,
and [0.32, 0.37, 0.38, 0.37, 0.36]um in the perpendicular direction. The axial FWHM values are
{1.03, 1.39, 1.50, 1.39, 1.55}um. The variation of the in-focus PSF sizes results from directional
chromatic aberration. Based on the PCA results, each horizontal and vertical diffraction order tile
has a resolution loss of 0.55um due to CA. Each diagonal diffraction order tile has a resolution
loss of 0.85um due to geometry.

3.2. Chromatic aberration (CA)

Due to the diffractive nature of the MFG, the CMFM system suffers from obvious CA effect,
which causes the loss of the intensity and resolution. Mathematically, the lateral CA per tile can
be expressed as [28]:

δx =
m f∆λ

dx
; δy =

n f∆λ
dy

, (15)

where m and n are horizontal and vertical diffraction orders of the tile, f is the focal length of the
second lens of the 4 f system, dx and dy are periods of the MFG in the x and y directions, and
∆λ is the bandpass spectrum of the emission collected by the detector. The axial CA for each tile,
i.e., different wavelengths are focused at different distances from the lens, can also be expressed
as [28]:

δz =
∆λ

λc
fm,n, (16)



Fig. 3. CA blur vs defocus blur. An in-focus tile with CA blur (red) and a defocus blur
(blue) are highlighted in (a), whose PSFs and OTFs are shown in (b). (c) plots a comparison
of linecuts indicated by blue and magenta lines in (b). For reference, a linecut in CA-free
central tile’s OTF (shown in first column and fourth row of Fig. 2) is also plotted (red). A
reconstruction comparison is shown in the right panel. (d) Object image. (e) Observation
image (for visualization purpose, each tile image is cropped). (f) Reconstruction using only
in-focus PSF. (g) Reconstruction using all the PSFs.

where λc the wavelength used to design the MFG, and fm,n = (m+ ln)∆z is the focusing distance
of each individual tile.
From Eq. (15) and Eq. (16), we can see that for the central tile where m = n = 0,

δx = δy = δz = 0, which means the central tile’s PSF and image are free of CA. However, for
off-axis tile, both lateral and axial CA exist. Each horizontal and vertical diffraction oder tile
has a dispersion of m f∆λ/dx , which is equal to 1.07um when m = 1 for our CMFM system of
f = 400mm, ∆λ = 15nm, dx = dy = 56um and M̂ = 120. Each diagonal diffraction order tile
has a dispersion of

√
m2 + n2 f∆λ/dx . In addition, the dispersion direction varies for different

diffraction order tiles due to geometry. If left uncorrected, the CA would cause a loss of the the
intensity and resolution in the chromatic dispersion direction. In principle, CA can be optically
corrected by using CA corrective optics. However, the corrective optics increases system cost
and complexity [4]. Here, we show that CA can be effectively compensated by computation.
This is possible because the CA is directional due to geometry of the tile distribution in our
CMFM system. For example, in Fig. 2, the eight non-centric tiles exhibit directional stretching
towards the image center. At depth z = 0 (first column), the PSF is CA-free. On the other focal
planes, from ∆z to 4∆z (second column to last column), even though the green boxes indicate
in-focus tiles, the PSFs stretch in different directions at different diffraction orders. However,
the stretching does not occur at the perpendicular direction of CA. This implies that although a
certain tile is affected by CA on one direction, the perpendicular direction is less affected and
can be used to compensate another tile which suffers CA at this direction. Therefore, by jointly
utilizing all the tiles in the model, 3D deconvolution can preserve 2D spatial frequencies that are
lost by CA.

CA blur vs defocus blur. Note here that the blur resulted from CA is different than the defocus
blur. Fig. 3 presents a comparison of the two types of blurs. In Fig. 3(a), the red box highlights
the in-focus tile. This in-focus tile is not located at the image center and has CA blur in horizontal
dimension. Meanwhile, the blue box highlights the tile that suffers both defocus blur and CA
blur but in vertical dimension. However, in horizontal dimension, this out-of-focus tile only
has defocus blur. An Optical Transfer Function (OTF) comparison is shown in Fig. 3(b). The
defocus blur size is smaller than the CA blur size in horizontal direction, resulting in a wider
OTF lobe, which implies that higher resolution reconstruction can be achieved by using all the
information provided from the PSFs. On the right panel, we present numerical simulation results.
The simulated resolution target [Fig. 3(d)] contains bars pointing four directions. By using



only the in-focus PSF, as shown in Fig. 3(f), only horizontal bars can be resolved, as the high
frequency has only been preserved in vertical direction [Fig. 3(b)]. On the other hand, by making
full use of the PSFs, signals on different directions can be well-recovered [Fig. 3(g)].

3.3. Field-of-View (FOV)

In conventional MFM designs [Fig. 4(a)], the lateral FOV is the same as the lateral size of each
tile image, which can be expressed in the sample domain as:

FOVx =
Lx

l M̂
; FOVy =

Ly

l M̂
, (17)

where Lx and Ly are detector size in the x and y directions, l is the number of tiles in each
dimension, and M̂ is the magnification of the MFM. The axial FOV is limited by the focused
imaging range of the designed MFG as

FOVz = (l2 − 1)∆z. (18)

From Eq. (17) and Eq. (18), we can see that by increasing the number of tiles l2, the axial FOV
will increase but at the expense of the reduced lateral FOV for a fixed detector size. Thus, MFM
trades its lateral FOV for the depth resolution. The maximum recovered 3D volume or tracking
space in MFM is FOVx × FOVy × FOVz .

3.3.1. Enlarging lateral tracking space

In conventional MFM designs, large tile spacings are used to ensure that large objects can be
imaged [see Fig. 4(a)]. However, this comes at the cost of a large reduction in lateral tracking
area. This, however, is not optimal for the MFM 3D tracking applications where the objects of
interest (bacteria or molecule, etc.) are quite small but move freely in a large 3D space. In single
molecule tracking, larger tracking space is more desirable than the lateral FOV.

Fig. 4. (a) Conventional MFM design uses a large tile spacing. (b) We propose to use a
smaller tile spacing, so as to achieve a small lateral FOV that can be tracked over a large area
for MFM tracking applications.

By modifying our MFG design to produce a smaller tile spacing, we can achieve a small
lateral FOV that can be tracked over a large area [see Fig. 4(b)]. The comparison of MFM image
diagrams obtained by two different design methods are shown in Fig. 4. When optimizing the
MFG for tracking applications, the dimensions of the lateral trackable area are

Tx =
Lx − (l − 1)sx

M̂
;Ty =

Ly − (l − 1)sy
M̂

, (19)



in x and y dimensions, where sx and sy are tile spacing in x and y dimensions. Note that Eq. (19)
is a general form of Eq. (17). From Eq. (19), we can clearly see that the lateral tracking area Tx

and Ty can be enlarged by designing a smaller tile spacing sx and sy . Therefore, our method can
achieve a larger lateral tracking area for MFM tracking applications.

3.3.2. Numerical validation

We simulated a 3D tracking space of 1024 × 1024 × 71 voxels with each voxel size of 108nm ×
108nm × 200nm. The scene consists of an ellipsoid [Fig. 5(a)] with a diameter of 4.32um in
x and y directions and 8um in z direction, which is similar to the size of a bacterium in our
experiment [see Fig. 8]. The xz slice and 1D axial profile of the ellipsoid are shown in Fig. 5(a)
(right) and Fig. 5(d) (red line), respectively. The center of the ellipsoid is placed at 35.8um
horizontally from the center of the detector.

Fig. 5. Simulations showing the capability of the proposed MFM of achieving larger lateral
tracking space than conventionalMFMdoes. (a) The synthetic 3D ground truth of an ellipsoid
(left) and its xz slice (right). The center of the ellipsoid is 35.8um away from the center of
the detector in x direction. MFM measurements (e-f) and corresponding reconstructions
(b-c) by different design methods. (d) 1D axial profile comparison between ground truth
(red) and reconstructions (black and blue). It is clear that the ellipsoid is reconstructed
poorly from conventional MFM method while our design provides a good reconstruction.
Signal loss as a function of lateral position of the tracked object for conventional (g) and our
designed MFM (h). Similar to vignetting effect, the signal falls off when approaching the
edges. Our proposed design alleviates peripheral signal loss and achieves an enlarged lateral
tracking area.

For conventional MFM, we used an experimentally captured z-stack PSF for the simulation.
The PSF consists of 5 × 5 tiles with a tile spacing of 205 pixels in both x and y dimensions. The
2D MFM measurement [Fig. 5(e)] was generated based on the forward model of Eq. (3). The



maximum signal and background photon counts are set to be 100 and 5, respectively. The Poisson
noise was then added to the measurement by using Matlab’s Poisson random number generator.
For the proposed MFM, the PSF was generated by cropping the central 101× 101 pixels region of
each tile of the experimentally acquired MFM PSF and then recombining the cropped small tiles.
As a result, the tile spacing is 101 pixels instead of 205 pixels. The measurement [Fig. 5(f)] of
this new MFM design was also generated based on Eq. (3) and then corrupted by background
and Poisson noise.

In conventional MFM, since the horizontal position of the synthetic ellipsoid exceeds the tile
spacing, the left two-column tiles produced by MFM which contains axial depth information
from −12∆z to −3∆z are shifted out of the detector’s FOV and therefore cannot be recorded
by the detector [Fig. 5(e)]. However, in our new MFM design, the 5 × 5 tiles are recorded in
their entirety by the detector [Fig. 5(f)]. According to Eq. (19), the lateral tracking area is
about 22um × 22um for conventional method, and 67um × 67um for the proposed method. For
reconstruction, we recovered a 3D space on a grid of 1024 × 1024 × 71 with each grid size being
108nm× 108nm× 200nm for both methods. The reconstructed ellipsoid (cropped from the larger
3D recovery space) and its xz slice by different design methods are shown in Figs. 5(b) and (c),
respectively. The 1D axial profiles of the reconstructed ellipsoids are also compared in Fig. 5(d)
(black and blue lines). We can clearly see that since the left two-column tiles of the ellipsoid are
missing in the conventional MFM measurement, the ellipsoid is reconstructed poorly while our
design provides a good reconstruction. We also compare the signal loss as a function of lateral
position of the tracked object in Figs. 5(g) and (h). Similar to vignetting effect, the signal falls off
when approaching the edges. Our proposed design alleviates peripheral signal loss and preserves
full-sized PSF array over an enlarged lateral space.

4. Experimental results

We present two experimental results with different biological samples to test the spatial and
temporal performance of our system. As shown in Fig. 6, we divide the whole image into
different sets of tiles by modifying the MFG pattern. However, the focal step ∆z is designed to be
0.25um for both cases. In Fig. 6(a), the image is divided into 3 × 3 tiles so that 9 focal planes are
in focus, while in Fig. 6(b), 5 × 5 focal planes are obtained for the purpose of tracking.

(a) Experiment 1: 

static 3D volume
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50

0
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(b)  Experiment 2: 

movable 3D bacterium

Fig. 6. Two experimental snapshot MFM raw images. (a) Experiment 1: snapshot captured
2D MFM image of multiple static periplasms by using an MFG with 9 focal planes under
exposure time of 0.5s. (b) Experiment 2: a frame from anMFM video of a moving bacterium
captured at 25 fps by using an MFG with 25 focal planes. The raw MFM video is shown in
Visualization 1.



4.1. Static scene: CMFM vs confocal microscopy

(a) Confocal 

raw image

(b) Confocal 

deconvolution
(d) CMFM

deconvolution

(c) CMFM

raw image

xy slice at z = 0

Vertical line profile indicated by red line above

yz slice at x = -6.5um

Axial line profile indicated by dashed line above

0.5um 0.5um

0.35um

Fig. 7. Proposed computational 3D reconstruction of CMFM image in comparison with
confocal deconvolution results. (a) Confocal raw data and (b) its deconvolution results. (c)
CMFM raw data and (d) its computational reconstruction results. In (a), confocal scan
is taken with a dual spinning disk confocal microscope (Model: CSU-W1) with the total
acquisition time of 20s, while in (c), the CMFM raw data is captured in a single exposure of
0.5s. The lateral resolution of the proposed computational reconstruction is about 0.35um
(second row of d) and the axial resolution is about 0.5um (fourth row of d), which are
comparable with those achievable with confocal deconvolution microscopy (second and
fourth rows of b).

We prepare several periplasms (static) as our imaging sample for 3D spatial resolution
characterization. The captured raw image is shown in Fig. 6(a). The exposure time is 0.5s.
The 3D PSFs are measured by recording a z-stack of a small fluorescent bead with z focal step
of 50nm. The 3D image are reconstructed on a 300 × 300 × 51 grid with each grid size being
108nm × 108nm × 50nm. Figure 7(d) shows our computational 3D reconstruction in comparison
with the captured focal stack [Fig. 7(c)] assembled by z-stacking 9 tiles from the 2D raw MFM
image. For ground truth, we captured the 3D image of periplasms using a scanning confocal



microscope [Fig. 7(a)] and performed deconvolution of the confocal image [Fig. 7(b)] by using a
commercial Huygens software. For each 3D image, a XY slice at z = 0 (first row) and a YZ slice
at x = −6.5um (third row) are displayed. The comparisons of vertical line profiles indicated by
the red solid line in XY slice, and comparison of axial profiles indicated by the red dotted line in
YZ slice are shown in the second and fourth rows, respectively. From Fig. 7(c), we can see that
without computational reconstruction, the 3D image assembled by z-stacking nine tile images
from 2D MFM measurement is degraded by noise, out-of-focus blur and low spatial resolution in
all three dimensions. The outer membranes are blurred and the empty space between them cannot
be recognized. In addition, due to the out-of-focus blur, the FWHM of the axial profile is about
2um. However, after deconvolution, the reconstructed 3D image [Fig. 7(d)] is much cleaner, less
out-of-focus blur, and more importantly, has high resolution in three dimensions. The empty
space between outer membranes can be clearly recognized. The outer membranes which are
vertically blurred to a single peak can be well separated by a dip of 84% between two peaks with
the lateral FWHM of 0.35um [second row of Fig. 7(d)], which is consistent with FWHM of the
measured PSF. Due to removal of out-of-focus blur, the axial FWHM is about 0.5um [fourth row
of Fig. 7(d)], with about two times improvement over that of the raw MFM image. Note that
we compare 0.5s captures with our CMFM instrument to a 20s confocal scan taken with a dual
spinning disk confocal microscope (Model: CSU-W1) made by Yokogawa Electric Corporation.
Our CMFM results show similar 3D image quality, but achieve a 40x reduction in acquisition
time. The automatically recovered background noise and optimal regularizer parameter at each
iteration of the joint RL-TV deconvolution process is shown in Appendix B Fig. 11.
Cautionary remarks. Note that although both our CMFM and confocal deconvolution

microscopy achieve 0.5um axial resolution in the experiment, the principle of the axial resolution
improvement is different for two techniques. Confocal microscopy increases axial resolution by
means of using a (or multiple) spatial pinhole(s) to block out-of-focus light in image detection
process. Therefore, the axial extent of confocal PSF is narrower than that in the widefield
microscope, and thus a high contrast and resolution image can be obtained. However, for
CMFM, the axial resolution improvement is based on sparsity-based super-resolution microscopy
techniques [29–31] by utilizing the signal sparsity in the arbitrary known domain (i.e., gradient
domain in our case). Recently, a new method called SPARCOM [32]: sparsity-based super-
resolution correlation microscopy by utilizing sparsity in the correlation domain, is also reported
to achieve spatial resolution comparable to PALM and STORM.

4.2. 3D tracking of moving bacterium

In the second experiment, we demonstrate the 3D video reconstruction of a moving bacterium (see
Visualization 2). The MFG is modified to focus on 5 × 5 planes, as shown in Fig. 6(b). A video
is captured at 25 frame per second (fps) (see Visualization 1). According to our first experimental
reconstruction where the axial FWHM can achieve 0.5um, we reconstruct the 3D image of the
bacterium on a grid of 150× 150× 41 with each grid size being 108nm× 108nm× 200nm, which
corresponds to a FOV of 16.2um × 16.2um × 8um in 3D space for each video frame. Figures
8(a-e) show five out of fifty frames 3D reconstructions. Note that for the visualization purpose,
we cropped the reconstructed 3D volume and just showed 4um × 6um × 4um region around the
bacterium. By computing the center of mass for each frame reconstruction, a 3D trajectory of the
moving bacterium can be tracked [Fig. 8(f)]. The colorbar in Fig. 8(f) indicates the frame index
over time. The automatically recovered background value and the optimal regularizer parameter
for each video frame is shown in Appendix B Fig. 12.

5. Conclusion

We have presented computational multi-focus microscopy (CMFM), a framework that balances
the imaging system design and computational processing to achieve single-shot 3D microscopy.



(a) Frame 10 (b) Frame 20 (c) Frame 30

(d) Frame 40 (e) Frame 50 (f) 3D tracking

Fig. 8. Experimental 3D reconstructions of a movable bacterium. A raw MFM video
(shown in Visualization 1) was captured at 25fps as the bacterial moves in 3D space. The
computational 3D reconstruction was performed for each video frame. Five out of sixty
frames reconstruction is shown in (a-e). (f) 3D trajectory of the bacterium by computing and
tracking its center of mass for each frame reconstruction. The colorbar indicate the frame
index over time. The complete 3D video reconstruction from the first frame to the last frame
is shown in Visualization 2.

Our optical design significantly reduces the system complexity and experimental alignment by
discarding CA correction optics. We correct for CA computationally rather than optically. This
comes from the fact that CA occurs in different directions at different diffraction order tiles.
Therefore, by jointly utilizing all the tiles in the model, 3D deconvolution can preserve 2D spatial
frequencies that are lost by CA. By incorporating TV regularization, our algorithm can not only
compensate for CA, but also perform high quality 3D reconstructions from noisy data. We build
on a joint regularized RL deconvolution algorithm and incorporate two types of noise. Notice
that our proposed algorithm is free of any parameter tuning by automatically estimating the
background noise and the optimal regularization parameter using alternating gradient descent.

We experimentally demonstrate that the out-of-focus blur along z can be significantly suppressed
and the axial resolution as high as 0.5um is achievable. The lateral resolution of 0.35um, which
is consistent with the diffraction-limited resolution, is also experimentally demonstrated. A high
resolution 3D video of a movable bacterium at 25fps is also computationally reconstructed to
verify the proposed CMFM framework. Even though we demonstrate a single color imaging
in the paper, we anticipate that multi-color imaging is also possible using our CMFM system.
Similar to [4], we can also insert a dichroic mirror to split the color channels onto separate
cameras, and place a narrow bandpass filter with different central wavelengths in front of each
camera. This is possible because the blur size of chromatic aberration depends on the bandpass
spectrum of the emission, but not the central wavelength [see Eq. (15)].
Finally, we propose a new design method of MFG to enlarge the lateral tracking area of

MFM tracking applications without sacrificing its axial FOV and single-shot capture speed. The
benefits of the simple system design and high resolution image recovery offered by the proposed
CMFM will broaden its applications in 3D single-shot imaging.



Appendix A: algorithm evaluation

To verify the effectiveness of the joint regularized RL algorithm for our CMFM and also quantify
the reconstruction quality, we performed a series of simulations by using an experimentally
captured CMFM PSFs. The synthetic 3D image [Fig. 9(top left)] was obtained from the
confocal microscope image of the 3D bacterial that was imaged under the CMFM. The CMFM
measurement image was generated based on image formation model of Eq. (3) and then degraded
with background and Poisson noise. The maximum signal and background photon counts are set
to be 50 and 5, respectively. The Poisson noise was then added to the measurement by using
Matlab’s Poisson random number generator.

Fig. 9. Simulations that demonstrate the capability of the joint RL-TV algorithm to
simultaneously recover the 3D image, background noise and the optimal regularizer parameter
for CMFM. Top left: a ground truth image. Top right: the standard RL deconvolution
without TV regularizer (λ = 0). Bottom left: RL-TV deconvolution by using an incorrect
background values (b = 10). Bottom right: joint RL-TV deconvolution can simultaneously
recover a 3D image, background noise and the optimal regularizer parameter. The PSNRs
for three methods are 34.2dB, 27.5dB, 40.2dB, and I-divergences are 204.3, 517, and 96.7,
respectively.

To quantify the reconstruction quality, we computed peak signal-to-noise ratio (PSNR) and
I-divergence [26] between ground truth image u and the reconstructed image v:

PSNR = 10 log10

(
MAX2

u

MSE

)
, Iu,v =

N∑
i=1

[
uiln

ui
vi
− (ui − vi)

]
, (20)

where MAXu is the maximum pixel value of the image u, MSE is the mean square error (MSE)
between two images u and v, and i stands for the voxel index.



Figure 9(top right) shows the reconstruction of the standard RL deconvolution without TV
constraint by setting λ = 0. Because TV prior is not used, the reconstruction can not preserve
the smooth edge of the original image and contains the artifacts. To investigate the effect of the
background noise on the CMFM reconstruction quality, we performed RL-TV deconvolution
but with an incorrect background value of 10 (the truth value is 5). The reconstructed image is
shown in Fig. 9(bottom left). Since the used background value is two times bigger than the real
one, the recovered 3D image suffers from substantial signal loss. The reconstructed 3D image by
joint RL-TV algorithm is shown in Fig. 9(bottom right). The PSNRs between the original image
and reconstructed images by three methods are 34.2dB, 27.5dB, 40.2dB, and I-divergences are
204.3, 517, and 96.7, respectively. Clearly, the joint RL-TV algorithm, which simultaneously
recovers 3D image, the background noise value and optimal regularizer parameter, gave the best
reconstruction quality of CMFM among three methods. Figures 10(a-d) show the reconstructed
background value b, the optimal regularizer parameter λ, PSNR and I-divergence at each iteration
of the deconvolution process. Note that both the background value and regularizer parameter
were initialized to be 100, but they gradually converged to 4.99 and 2.2 × 10−3, respectively.
From Fig. 10(c-d), we can also see that the image quality is dramatically improved during the
iterative reconstruction process, proving the effectiveness of joint RL-TV algorithm for the 3D
reconstruction of our snapshot CMFM system.

(a)

(c)

(b)

(d)

Fig. 10. The convergence analysis of the joint RL-TV algorithm for the simulated CMFM. (a)
The reconstructed background noise value and (b) optimal regularizer parameter during the
iteration of joint RL-TV deconvolution process. (c) PSNR and (d) I-divergence between the
ground truth image and reconstructed image at each iteration of the deconvolution process.

Appendix B: experimental results

We also tested the algorithm on two types of real data. The 3D reconstruction of static periplasms
is shown in Fig. 7. The automatically recovered background noise and optimal regularizer
parameter at each iteration of the joint RL-TV deconvolution process is shown in Fig. 11.
For the second experiment, we captured an MFM video of a moving bacterium at 25 frames

per second (fps) using our CMFM techniques. The complete 3D video reconstruction from the



first frame to the last frame is shown in Visualization 2. The automatically recovered background
value and the optimal regularizer parameter for each video frame is shown in Fig. 12.

Fig. 11. The recovered background values (left) and optimal regularizer parameter λ (right)
at each iteration of the joint RL-TV deconvolution process for the first experiment.

Fig. 12. The recovered background values (left) and optimal regularizer parameter λ (right)
for each video frame of a movable bacterium.

Note that the algorithm was written in MATLAB2014b and run on the computer with CPU
E5-1650 and 64GB of RAM. The algorithm terminated when the maximum iteration number
was reached or it converged, defined when the difference between to consecutive values of the
cost function is smaller than a predefined threshold (10−6 in our case). For the first experiment, it
took 134 iterations to converge and each iteration took about 6 seconds. The total computation
time was therefore about 13.4 minutes. For the second experiment of 3D video reconstruction, it
took 83 iterations to converge for a single video frame and each iteration took about 3.8 seconds.
The total computation time was therefore about 5.2 minutes for each video frame. The code is
publicly available on our website: http://compphotolab.northwestern.edu.

Appendix C: design and manufacture of the MFG

The MFG was designed with a focal shift ∆z = 0.25um between tiles based on a procedure
outlined in [4]. The unit cell of the MFG was designed by using the iterative Gerchberg-Saxton
(GS) algorithm so that fluorescence emission light was distributed evenly and efficiently among
the tiles. To create a proper focal shift, the geometric distortion [4] was then imposed on the
MFG.
In order to construct the MFG, a 5mm thick UV fused silica substrate (Thorlabs WG41050)

was cleaned by using acetone, isopropyl alcohol and distilled water and then spin-coated with
1.5um thick layer of AZ1512 photoresist (Shipley). A laser writer (Heidelberg) exposed the MFG
pattern into the photoresist (405nm laser at a dose of 150mJ). The photoresist was developed in
AZ-300 MIF developer (Integrated Micro Materials) for 20 seconds. Then the pattern was etched
in a reactive ion etcher (RIE, Oxford Instruments). The photoresist remaining after etching was



stripped with acetone in an ultrasonic bath. The etching depth and surface roughness of the MFG
were measured with contact profilometry. All fabrication steps were completed at the Prizker
Nanofabrication Facility at the University of Chicago.
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