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Abstract

We present a novel computational imaging system with
high resolution and low noise. Our system consists of a tra-
ditional video camera which captures high-resolution inten-
sity images, and an event camera which encodes high-speed
motion as a stream of asynchronous binary events. To pro-
cess the hybrid input, we propose a unifying framework that
first bridges the two sensing modalities via a noise-robust
motion compensation model, and then performs joint image
filtering. The filtered output represents the temporal gradi-
ent of the captured space-time volume, which can be viewed
as motion-compensated event frames with high resolution
and low noise. Therefore, the output can be widely applied
to many existing event-based algorithms that are highly
dependent on spatial resolution and noise robustness. In
experimental results performed on both publicly available
datasets as well as our new RGB-DAVIS dataset, we show
systematic performance improvement in applications such
as high frame-rate video synthesis, feature/corner detection
and tracking, as well as high dynamic range image recon-
struction.

1. Introduction
Recently, a new breed of bio-inspired sensors called

event cameras, or Dynamic Vision Sensors (DVS), has
gained growing attention with its distinctive advantages
over traditional frame cameras such as high speed, high dy-
namic range (HDR) and low power consumption [22, 45].
Thus far, event cameras have shown promising capability
in solving classical as well as new computer vision and
robotics tasks, including optical flow and scene depth es-
timation [1, 31, 40, 49], high frame-rate HDR video synthe-
sis [15, 30, 37, 38, 41, 43, 52, 55], 3D reconstruction and
tracking [11, 19, 27, 36], visual SLAM [51], object/face de-
tection [34, 35] and autonomous wheel steering [26].

Despite numerous advances in event-based vision [8],
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Figure 1: Compared to traditional frame cameras, event
cameras (e.g., DAVIS240) can capture high-speed motion
(a), but bear low resolution and severe noise (b). Our
system jointly filters between a high-resolution image (c)
and high-speed events to produce a high-resolution low-
noise event frame (d), which can interface with downstream
event-based algorithms with improved performance.

current event sensor prototypes, e.g., DAVIS240, still bear
low spatial resolution and severe noise (Fig. 1(a) & (b)).
Moreover, the unique event sensing mechanism accord-
ing to which each pixel individually responds to brightness
changes and outputs a cloud of continuously timestamped
address points (Fig. 1(a)) renders event-based super reso-
lution and denoising elusively challenging. On the other
hand, commercial frame sensors can easily acquire millions
of pixels, and image-based super resolution and denoising
algorithms are highly advanced after decades of develop-
ment. These sensory and algorithmic imbalances motivate
us to ask: Can we make complementary use of event and
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frame sensing? What is the unifying mechanism? How does
their synergy benefit related visual tasks and applications?

To answer these questions, we build a hybrid camera sys-
tem using a low-resolution event camera, i.e., DAVIS240
and a high-resolution RGB camera. We establish a com-
putational framework that bridges event sensing with frame
sensing. Our system inherits the high-resolution property
(8× higher than DAVIS) from the frame camera and is ro-
bust to event sensor noise.

Contributions:
• We propose a novel optimization framework, guided

event filtering (GEF), which includes a novel motion com-
pensation algorithm unifying event and frame sensing. By
taking complimentary advantages from each end, GEF
achieves high-resolution, noise-robust imaging.
• We build a prototype hybrid camera system and col-

lect a novel dataset, i.e., RGB-DAVIS. Validation exper-
iments have been conducted on both publicly available
datasets and RGB-DAVIS.
• We show broad applications of GEF to benefit opti-

cal flow estimation, high frame rate video synthesis, HDR
image reconstuction, corner detection and tracking.

Limitations: Since our work is based on the assumption
that frame sensing and event sensing have complementary
advantages, one of the limitations is when one sensing mode
under-performs significantly. For example, when the frame
sensor suffers from significant blur or noise, our framework
should only utilize event information, i.e., to use events as
both the guidance and the input. On the event side, events
triggered from fast lighting variations are not modeled in
our linear motion compensation model, and therefore may
hinder the effectiveness of GEF due to incorrect flow esti-
mation. Our hybrid camera does not preserve the low power
consumption benefit of an event camera.

2. Related works

Event denoising. Event denoising is considered a pre-
processing step in the literature [6, 7, 18, 24, 29]. Existing
event denoising approaches exploit local spatial-temporal
correlations, and label isolated events as noise to be can-
celed [53]. However, these denoisers face challenges when
retrieving missing events for low contrast spatial texture.
We address this issue by exploiting the correlation between
events and an intensity image.

Event-based motion compensation. Motion compensa-
tion is an emerging technique to associate local events. It
has shown benefits for downstream applications such as
depth estimation [9], motion segmentation [48] and feature
tracking [10]. The assumption is that local events are trig-
gered by the same edge signal and should comply with the
same motion flow [4]. The flow parameter can be estimated
by maximizing the contrast of the histogram/image of the

warped events [9]. Recent works have incorporated smooth
constraints such as total variation [56].

Computational high speed cameras. The tradeoff be-
tween spatial resolution and temporal resolution in mod-
ern sensors introduces a fundamental performance gap be-
tween still cameras and video cameras. To address this is-
sue, several methods [5, 13, 42] have emerged that utilize
inter-frame correspondences via optical flow and/or space-
time regularization. Hybrid cameras have been designed
towards flexible [14], adaptive [59] sensing of high speed
videos. Recently, a number of compressive video sens-
ing prototypes [2, 17, 25, 39, 47] have been devised with
additional spatio-temporal encoders and compressive sens-
ing algorithms for data recovery and inference. Extensions
of compressive sensing high-speed imaging have achieved
single-shot 3D video recovery by incorporating active illu-
mination [54].

Guided/joint image filters. The goal of guided/joint im-
age filters is to transfer structural information from a refer-
ence image to a target image. The reference and the target
can be identical, in which case the filtering process becomes
an edge-preserving one [12, 16, 20, 46]. Although similar
ideas of guided/joint image filtering (GIF) have been ex-
plored between RGB and near infrared (NIR) images [57],
3D-ToF [32], and hyperspectral data [33], the major chal-
lenge for applying GIF to event cameras is that events do
not directly form an image and are spatio-temporally mis-
aligned by scene motions or illumination variations.

3. Methods
In this section, we first briefly review the event sensing

preliminaries in Sec. 3.1, and derive its relation to inten-
sity/frame sensing in Sec. 3.2. Our framework guided event
filtering (GEF) is then introduced in Sec. 3.3 (for the motion
compensation step), Sec. 3.4 (for the joint filtering step) and
Sec. 3.5 (for the implementation details).

3.1. Event sensing preliminaries
Consider a latent space-time volume (Ω × T ∈ R2 ×

R) in which an intensity field is sampled simultaneously
by a frame-based camera which outputs intensity images
I(x, y; t) and an event camera which outputs a set of events,
i.e., E = {etk}

Ne

k=1, whereNe denotes the number of events.
Each event is a four-attribute tuple etk = (xk, yk, tk, pk),
where xk, yk denote the spatial coordinates, tk the times-
tamp (monotonically increasing), pk the polarity. pk ∈
{−1, 1} indicates the sign of the intensity variation in log
space. I.e., pk = 1 if θt > εp and pk = −1 if θt < εn,
where θt = log(It + b)− log(It−δt + b). b is an infinitesi-
mal positive number to prevent log(0). It and It−δt denote
the intensity values at time t and t− δt, respectively, and εp
and εn are contrast thresholds. We will use Lt to denote the



log intensity at time t, i.e., Lt=̇ log(It + b). For now, we
assume that I and E have the same spatial resolution.

3.2. Event-intensity relation
We show that the event and intensity/frame sensing are

bridged via temporal gradients. On the intensity side, we
employ the optical flow assumption for deriving the tempo-
ral gradient of the latent field L. Assume that in a small
vicinity, there exists a small flow vector δu = [δx, δy, δt]>

under which the intensity is assumed to be constant. Math-
ematically, this assumption can be expressed as:

L(x+ δx, y + δy, tref + δt) = L(x, y, tref). (1)

The Taylor series expansion of the left side of Eq. (1) gives:

Ltref+δt = Ltref +∇xytLtrefδu + o(|δx|+ |δy|+ |δt|), (2)

where∇xytLtref = [∂L∂x ,
∂L
∂y ,

∂L
∂t ]
∣∣
tref

denotes the gradient op-
erator evaluated at time tref. If we substitute only the zero-
and first-order terms to approximate Ltref+δt and re-arrange
Eq. (1), we can obtain the following relation:

∂L
∂t

∣∣∣
tref

' −∇xyLtrefv =̇ Ql, (3)

where∇xyLtref = [
∂Ltref
∂x ,

∂Ltref
∂y ] denotes the spatial gradient

of Ltref , and v = [ δxδt ,
δy
δt ]> is the velocity vector. For future

reference, we define the temporal gradient derived from in-
tensity image as Ql.

On the event side, the flow velocity v shall result in posi-
tion shifts for local events. This is based on the assumption
that local events are triggered by the same edge, as shown in
Fig. 2(a). Therefore, the temporal gradient can be approx-
imated by the tangent of a set of warped events in a local
window:

∂L
∂t

∣∣∣
tref

≈
∑

(tk−tref)∈(0,δt) εk δ̂(x− x′k)

δt
=̇ Qe, (4)

where εk = εp, if pk = 1; and εk = εn, if pk = −1. δ̂(·) is
the Dirac delta function. x′k is the event location by warping
(back propagating) measured events to time tref according
to the flow velocity v, i.e., x′k = xk − (tk − tref)v, where
x = [x, y]>, xk = [xk, yk]> and x′k = [x′k, y

′
k]>. In the

rest of the paper, we define the temporal gradient derived
from events as Qe.

From Eq. (4) and Eq. (3) we obtain,

Qe ' Ql. (5)

The above equation establishes the relation between
events and image spatial gradients. There are two un-
knowns, εk and v in the relation, where εk ∈ {εp, εn} can
be obtained from the event camera configuration. Numeri-
cally, εk can be viewed as a constant scaling value to match
Qe with Ql. The key unknown is the flow velocity v.

Events generated by illumination variation are not considered here.

t

x

(a)

x

(b)

x

(c)
Figure 2: (a) A latent edge signal (gray curve) triggers a set
of (noisy) events due to motion. (b) In contrast maximiza-
tion (CM) [9], the events are warped back at tref to form a
histogram (purple). (c) In our joint contrast maximization
(JCM), an image is formed jointly by the events (purple)
and the edge of the intensity image (green).

3.3. Joint contrast maximization
Previous work [9] proposed contrast maximization (CM)

to optimize the flow parameter based on the contrast of the
image (or histogram) formed only by the warped events, as
shown in Fig. 2(b). However, CM is designed for event data
alone. In the presence of an intensity image, we extend the
framework of CM and propose joint contrast maximization
(JCM) to estimate the flow vector based on intensity im-
age and events. Particularly, we propose to maximize the
contrast of an image/histogram jointly formed by the abso-
lute edge of the intensity image and the warped events, as
shown in Fig. 2(c). Mathematically, the image of warped
events and intensity edge is expressed as:

J(x;v) =

Ne∑
k=1

δ̂(x− x′k(v)) + αS(x), (6)

where S(x) is the edge image and can be defined as S(x) =√
|gxI(x)|2 + |gyI(x)|2. We use the Sobel edge (with-

out thresholding) as a discrete approximation. The x-axis
kernel can be defined as gx = [−1, 0, 1;−2, 0, 2;−1, 0, 1],
gy = g>x , and α = Ne∑

i,j S(i,j)
is a normalization coefficient

to balance the energy of the two data.
The objective for estimating the flow velocity is:

v̂ = argmax
v

1

Np

∑
ij

(Jij − J̄)2, (7)

where Np indicates the number of pixels in image patch
J , while J̄ denotes the mean value of J . Note that when
no intensity image is available or it has low quality (e.g.,
blurry), the Sobel term can be set to zero and the formu-
lation degenerates to event-only contrast maximization [9].
With non-zero S, the maximal contrast corresponds to the
flow velocity that transports events to the image edge. Non-
optimal velocity will lead to a deterioration of the contrast.

Here, we perform a numerical comparison between CM
and JCM, shown in Fig. 3. We follow the analysis in [22]
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Figure 3: Comparison between CM and JCM [9] for flow
estimation w.r.t. event noise.

and [28] for event simulation from images. I.e., a thresh-
olding operation (εp = 0.2, εn = −0.2) is applied on the
difference image between the flow-shifted image and the
original/last image. The event noise follows a Gaussian dis-
tribution around the per-pixel threhold values [22]. We con-
sider a standard deviation range of σe ∈ (0, 0.1), and com-
pare the accuracy for flow estimation w.r.t. different flow
directions with fixed flow radius of 5 pixels. We use the Eu-
clidean distance to quantify the flow estimation error. The
error is averaged over 18 images of size 30× 30. Details of
this experiment as well as visual examples can be found in
the supplementary material. As shown in Fig. 3, both JCM
and CM error increases as noise level increases. However,
JCM maintains low error across all spectrum of the noise
level, revealing a more noise-robust property than CM.

3.4. Joint filtering
The goal of joint/guided filtering is to construct an op-

timized output inheriting mutual structures from Qe and
Ql. In guided image filtering, an output image patch Qo

is defined as an affine transformation of the guidance image
patch Ql:

Qo = gaQ
l + gb. (8)

By the above formulation, Qo inherits the spatial structure
of Ql, i.e., ∇Qo = ga∇Ql in each local patch. The objec-
tive is generally defined as a data term and a regularization
term:

argmin
ga,gb

||Qo −Qe||22 + λΦ, (9)

where Φ is the regularization functional and λ the regular-
ization parameter. In particular, we consider three popular
as well as emerging filters, namely,
• Guided Image Filtering (GIF) [16]: In this case, Φ =

g2a. This regularization term is to prevent coefficient ga from
being too large.

Algorithm 1 Guided Event Filtering (GEF)

Input: Intensity image I , events E .
Output: Filtered temporal gradient Qo.
1: Estimate the flow field v using JCM in Eq. (7);
2: Compute Ql in Eq. (3) and Qe in Eq. (4);
3: Perform guided filtering according to Eq. (9).

• Side Window Guided Filtering (SW-GF) [58]: In this
case, the regularization term is the same as the GIF, but the
regression is computed on 8 (upper-half, lower-half, left-
half, right-half, northwest, northeast, southwest, southeast)
side windows instead of a single window centered around
the target pixel. Compared to GIF, this filter has the prop-
erty of better preserving the edges of the filter input image.
• Mutual-Structure for Joint Filtering (MS-JF) [44]:

This filter emphasizes the mutual structure between the in-
put and guidance images, and performs filtering in a bidi-
rectional manner. The mutual structure is sought after by
minimizing a similarity measure term, i.e., Es = ||gaQl +
gb−Qe||22+||g′aQe+g′b−Ql||22, where g′a and g′b denotes the
counterpart coefficients for using Qe to represent Ql. Addi-
tionally, the regularization term consists of the smoothness
term, i.e., Er = λ1g

2
a + λ2g

′2
a , as well as the deviation term

which avoids filtered output deviating too far from the orig-
inal images, i.e., Ed = λ3||gaQl+gb−Ql||22 +λ4||g′aQe+
g′b − Qe||22. The objective is to minimize the summed loss
terms, i.e., E = Es + Er + Ed, over ga, gb, g′a, g

′
b.

3.5. Implementation details
The steps of GEF is summarized in Algorithm 1.
In the JCM step, we use a local window with radius rw

to estimate pixel-wise flow. Areas with events fewer than 1
are skipped. rw may vary due to the structure of the scene.
A large rw can be used when the scene has sparse and iso-
lated objects, in exchange for more time to compute the flow
field. The intensity image support is slightly larger (about
several pixels on four sides) than the event window to pre-
vent fallout of events due to large velocity.

Both the computation of flow velocity and Ql use the
spatial gradient. Therefore, the spatial gradient image can
be computed once. Ql is normalized to match the range of
Qe before the filtering step. This normalization step also
functions as an estimation for the event threshold (εk). The
pixel values of the output imageQo are rounded to integers,
which can be interpreted as the event counts.

In the filtering step, we set the window width to be 1 for
all three filters. The filtering is switched between intensity-
event joint guiding and event self-guiding. When a win-
dowed image patch has low spatial contrast, and therefore
large α values, we set α = 0 in Eq. (6) and Ql = Qe. We
run 20 iterations for MS-JF. For GIF and SW-GF, λ is set
to 1 × 10−3. For MS-JF, the same values are assigned for



the parameter pairs, i.e., λ1 and λ2 (∼ 1 × 10−2), as well
as λ3 and λ4 (∼ 3). This is to encourage equal weights be-
tween the input and guidance. Filtering is performed when
Qe andQl are at the same resolution and are both grayscale.
Details for filtering color events are included in the supple-
mentary material. The filtered output does not preserve the
ternary representation as the original events. Our image-
based event representation is better suited for downstream
algorithms that process events in image-based fashion [55].
It is possible to warp the events back in the space-time
volume to restore the ternary representation. One possible
restoration approach is to evenly distribute events along the
computed flow direction.

Similar to CM [9], the computational complexity of JCM
is linear on the number of events to be warped. The addi-
tional computation of JCM contrast is typically negligible
compared to CM. Both GIF and SW-GF have linear com-
putation time w.r.t. patch pixel size. MS-JF is iteration-
dependent.

4. Experiments
4.1. Numerical evaluation

Guided denoising. In this experiment, we compare GEF
(considering all three filters) with two state-of-the-art event-
based denoising approaches, i.e., Liu et al. [24] and EV-
gait [53]. To quantify the denoising performance, we use
zero-noise event frame as the ground truth. The denoised
images are compared against the ground truth images us-
ing the root mean squared error (RMSE) criterion. The
smaller the RMSE values, the better denoising the perfor-
mance. At each noise level, the RMSE values are aver-
aged over 18 images. The results are plotted in Fig. 4.
As can be seen, all three GEF methods have better denois-
ing performance compared to non-guidance-based methods.
Among the three guided filters, MS-JF [44] has the lowest
RMSE values than the other two filters across the whole
range. Therefore, we choose MS-JF as the filtering algo-
rithm within GEF. We only show MS-JF results in the fol-
lowing experiments. Additional results using GIF and SW-
GF are shown in the supplementary material.

Qualitatively, we compare the denoising performance on
the captured real-world scenarios dataset (which will be in-
troduced in Sec. 4.2). The results are shown in Fig. 5. Com-
pared to existing approaches, GEF (MS-JF) is able to en-
hance the edge features as well as removing event noise.

Guided super resolution. Because it is challenging to
obtain ground truth image and events at multiple scales, we
perform quantitative evaluation for upsampling in simula-
tion. We use 18 high resolution (HR) images to simulate
the ground truth HR events. To simulate the low resolu-
tion (LR) events, the HR images are first downsized and
used to generate zero-noise events using the same proce-
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Figure 4: Comparison of event denoising performance.
Intensity-guided filters (GIF [16], SW-GF [58] and MS-JF
[44] unanimously outperform non-guidance-based methods
(Liu et al. [24] and EV-gait [53]).

(a) Image + events (b) Filter input, Qe (c) Guidance, Ql

(d) Liu et al. [24] (e) EV-gait [53] (f) GEF
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Figure 5: Comparison of denoising performance on our
RGB-DAVIS dataset. (a) An image overlaid with events;
(b) Ql as filter guidance; (c) warped events, Qe, as filter
input; (d-f) denoising results using (d) Liu et al. [24], (e)
EV-gait [53] and (f) our GEF (MS-JF). Additional results
are presented in the supplementary material.

dure described in Sec. 3.3. We consider three downsizing
scales up to 8×. For future reference, we use 2×, 4×, and
8× to denote the upsampling factors. For 2× upsampling,
we first bicubically upsample the low-resolutionQe for 2×,
and then perform same-resolution joint filtering with 2×Ql
(downsized from HR). The 2× upsampling procedure is it-
eratively applied for higher scales.



Table 1: PSNR comparison for super resolution
methods 2× 4× 8×

(1) no
guidance SR

Bicubic 40.110 39.133 39.368
EDSR [23] 39.976 39.363 39.319

SRFBN [21] 40.572 39.937 40.152
EDSR-ev 40.315 40.577 39.961

SRFBN-ev 40.837 40.309 40.110
(2) guided
SR, w/ SR
image

Bicubic 42.591 42.612 44.144
EDSR [23] 42.599 42.655 44.174

SRFBN [21] 42.603 43.037 44.170
(3) GEF 42.755 43.319 44.218

Beam splitter

R
G

B
cam

e
ra

(a) Experimental setup

RGB camera view

Event camera view

(b) Calibrated views

Figure 6: Our RGB-DAVIS imaging system.

We compare three super resolution (SR) schemes: (1) no
guidance SR. The scheme refers to direct SR without guid-
ance. Such methods include the baseline bicubic upsam-
pling, and two state-of-the-art single image SR methods:
EDSR [23] and SRFBN [21]. We apply both pre-trained
models as well as re-trained ones. Re-trained models are de-
noted as EDSR-ev and SRFBN-ev, respectively. (2) guided
SR, w/ SR image. In this case, the joint filtering is applied
between the computed SR image and the event image. (3)
GEF. GEF here is referred as joint filtering between the pris-
tine HR image and the event image. The results are summa-
rized in Table 1. We use Peak Signal to Noise Ratio (PSNR)
as performance measurement. As can be seen, (2) and (3)
both have higher PSNR than (1), which suggests the effec-
tiveness of using image as guidance. In (1), re-training SR
networks slightly improves the performance, but still under-
performs (2) and (3). Another interesting effect in (2) and
(3) is that PSNR values increase as scale factor increases.
This is because the event image at high resolution has sparse
non-zero signals representing thin edge. Examples and ad-
ditional analysis are included in the supplementary material.

4.2. RGB-DAVIS camera system
To test GEF for real-world scenarios, we build a hybrid

camera consisting of a high-resolution machine vision cam-
era and a low-resolution event camera, i.e., DAVIS. We refer
to our camera prototype as RGB-DAVIS camera.

Setup and calibration. As shown in Fig. 6(a), we collo-
cate an event camera (DAVIS240b, resolution of 180× 190

Figure 7: Examples of our proposed RGB-DAVIS dataset.
In each square, lower-left is the converted event frame, and
upper-right is the RGB image. Please find images of our
complete dataset in the supplementary material.

pixels, with F/1.4 lens) and a machine vision camera (Point
Grey Chameleon3, resolution of 2448 × 2048 pixels, 50
FPS, with F/1.4 lens). A beam splitter (Thorlabs CCM1-
BS013) is mounted in front of the two cameras with 50%
splitting. We use a 13.9” 60Hz monitor for offline geomet-
ric calibration for two signals. For geometric calibration,
we consider homography and radial distortion between two
camera views. In order to extract keypoints from event data,
we display a blinking checkerboard pattern on the moni-
tor and integrate the captured events over a time window to
form a checkerboard image, as shown in Fig. 6(b). For tem-
poral synchronization, we write a synchronization script to
trigger the two cameras simultaneously. Details about the
calibration procedure can be found in the supplementary
material.

Dataset collection. We use RGB-DAVIS to collect var-
ious sequences of event-RGB video clips. Examples are
shown in Fig. 7. Both indoor and outdoor scenarios are
captured. The scenes widely range from simple shapes to
complex structures. All the clips involve camera motion
and/or scene motion.

Results. After calibration, we perform guided filtering
with three upsampling scales, i.e., 2×, 4×, 8×. The flow
is estimated at 1×. We show three upsampling examples
corresponding to monitor, indoor and outdoor scenarios of
our captured dataset in Fig. 8. The captured images as well
as calibrated events are shown in Fig. 8(a), with the filtered
output shown in Fig. 8 (c-f). As can be seen, the events are
gradually and effectively upsampled and denoised. Please
see additional results for scene motion as well as filtering
results using other filters in the supplementary material.

5. Applications
GEF has a variety of applications for event-based tasks.

Here, we enumerate several example applications.
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Figure 8: Guided upsampling results on our RGB-DAVIS data.
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Figure 9: Frame prediction using the DMR method in [55].

5.1. High frame-rate video frame synthesis
The task is to reconstruct high frame-rate video frames

using a hybrid input of image(s) and events [30, 55].

Future frame prediction. In this case, we perform future
frame prediction, i.e., given a start intensity frame and the
subsequent events to predict the future frame. We imple-
ment the differentiable model-based reconstruction (DMR)
method in [55]. Without GEF, the reconstruction perfor-
mance for the case of “slider depth” is 25.10 (PSNR) and
0.8237 (SSIM). With GEF, the reconstruction performance
improves to 26.63 (PSNR) and 0.8614 (SSIM). For a qual-
itative comparison, the #5 frame out of 12 reconstructed
frames are shown in Fig. 9. The complete results can be
found in the supplementary material.

Motion deblur. GEF can be applied to improve event-
based motion deblur [30]. Given a blurry image
(Fig. 10(a)) and the events captured during the exposure
time (Fig. 10(b)), Pan et al. [30] proposed an event-based
double integral (EDI) approach to recover the underlying
sharp image(s), as shown in Fig. 10(c). We employ the
same formulation, but use our GEF to first filter the events.
Note that in this case, the blurry image does not provide use-

ful edge information, we therefore warp neighbor events to
form the guidance images. The result is shown in Fig. 10(e).
Even without the guidance of an intensity image, GEF can
still reduce the event noise using neighbor events. We fur-
ther compare the EDI result with denoised EDI output using
bilateral filtering, as shown in Fig. 10(g). Compared to the
post-denoising scheme, GEF (Fig. 10(f)) is more effective
in eliminating the event noise.

5.2. HDR image reconstruction
GEF is able to improve HDR image reconstruction be-

cause of its effectiveness for motion compensation and de-
noising. As shown in Fig. 11(a) and (c), the intensity image
contains over-exposed regions while the warped event im-
age preserves structures in those regions. We follow a pre-
vious approach which employs Poisson reconstruction for
HDR reconstruction [3]. The difference in our case is that
the intensity image is used for reconstruction. In such case,
GEF is applied by setting the warped event image Qe as
guidance and Ql as filter input. The restored gradient field
∇xyI

′ along with the estimated flow v and the intensity im-
age are then used to reconstruct an HDR image. As can be
seen in Fig. 11(c) and (d), the reconstructed HDR image w/
GEF has higher contrast and less artifacts than w/o GEF.

5.3. Corner detection and tracking
GEF can be applied on event-based feature/corner de-

tection and tracking. To demonstrate the benefit of guided
upsampling, we use RGB-DAVIS camera to capture a pe-
riodic circularly moving checkerboard pattern. We employ
the event-based Harris corner detector (evHarris) [50] as the
backbone corner detector. A slight difference between our
implementation and the original evHarris is that we use the
warped event image (motion compensated), instead of di-
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(c) EDI w/o GEF (d) Bilateral denoising of (c)

(e) EDI w/ GEF (f) (g) (h)
Figure 10: Motion deblur using EDI [30]. (f) EDI w/o GEF,
from (c). (g) EDI result (w/o GEF) + bilateral denoising,
from (d). (g) EDI w/ GEF, from (e).

(a) Over-exposed image (b) image + events

(c) w/o GEF (d) w/ GEF
Figure 11: HDR image reconstruction based on Poission
method in [3]. (a) Low dynamic range image. (b) Overlaid
with events. (c) Reconstructed HDR image w/o GEF. (f)
Reconstructed HDR image w/ GEF.

(a) w/o GEF, 1× (b) w/ GEF, 8×

(c) w/o GEF, 1× (d) w/ GEF, 8×
Figure 12: Corner detection using evHarris [50].

rectly accumulating events in local windows. As shown in
Fig. 12(a) and (b), with GEF (8× guided upsampling), the
checkerboard corners are detected more accurately than w/o
GEF. We also compare the corner tracks computed both w/o
and w/ GEF process. The results are shown in Fig. 12(c)
and Fig. 12(d). As can be seen, the corner points that are
upsampled by the GEF can be tracked more accurately than
the original frames.

6. Concluding remarks
There are several interesting takeaways from our ex-

perimental study. First, our results showed that with the
assistance of intensity images, performance improvement
has been achieved for flow estimation, event denoising
and event super resolution (SR). Second, for event SR,
our results indicated that directly applying state-of-the-art
CNN-based SR algorithms, w/ or w/o re-training, performs
worse than first applying the same SR algorithms on inten-
sity images and then performing joint filtering. Third, we
have evaluated three joint filtering approaches with differ-
ent properties. Our results concluded that finding the mutual
structure (MS-JF) is better suited than the other two filters.
Fourth, we have demonstrated the benefit of event denoising
and SR by testing on a variety of downstream tasks.
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